Magnetoelectric Wireless Power Transfer System for Biomedical Implants

Dibyajyoti Mukherjee, D. Mallick
{"title":"Magnetoelectric Wireless Power Transfer System for Biomedical Implants","authors":"Dibyajyoti Mukherjee, D. Mallick","doi":"10.1109/MWSCAS47672.2021.9531861","DOIUrl":null,"url":null,"abstract":"This work presents the design and analysis of magnetoelectric (ME) transducer based wireless power transfer (WPT) system incorporating a suitable interface power management circuit (PMC). ME transducers provide effective means to design high-efficiency power transfer to medical implantable devices at low frequencies addressing the trade-off between size miniaturization, lower skin attenuation and higher power transfer. A tri-layered ME laminated transducer operating at 50kHz is designed and fabricated to study the source characteristics. The proposed ME WPT device produces 2.4V output voltage and 1.75mW output power across a load of 3kΩ when the input magnetic field is 2.5mT. A novel PMC design based on Dickson Charge Pump followed by peak detector, buck regulator, and synchronous electric charge extraction (SECE) switching technique is considered which is implemented using low-cost, off-the-shelf components on PCB. The proposed circuit is characterized by very low current consumption and is specifically designed for operating at an input voltage ranging between 350mV to 15V, which provides a significant flexibility in terms of transducer design specifically towards high efficiency WPT systems.","PeriodicalId":6792,"journal":{"name":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"91 1","pages":"356-359"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS47672.2021.9531861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This work presents the design and analysis of magnetoelectric (ME) transducer based wireless power transfer (WPT) system incorporating a suitable interface power management circuit (PMC). ME transducers provide effective means to design high-efficiency power transfer to medical implantable devices at low frequencies addressing the trade-off between size miniaturization, lower skin attenuation and higher power transfer. A tri-layered ME laminated transducer operating at 50kHz is designed and fabricated to study the source characteristics. The proposed ME WPT device produces 2.4V output voltage and 1.75mW output power across a load of 3kΩ when the input magnetic field is 2.5mT. A novel PMC design based on Dickson Charge Pump followed by peak detector, buck regulator, and synchronous electric charge extraction (SECE) switching technique is considered which is implemented using low-cost, off-the-shelf components on PCB. The proposed circuit is characterized by very low current consumption and is specifically designed for operating at an input voltage ranging between 350mV to 15V, which provides a significant flexibility in terms of transducer design specifically towards high efficiency WPT systems.
生物医学植入物磁电无线传输系统
本文介绍了基于磁电(ME)换能器的无线电力传输(WPT)系统的设计和分析,该系统包含合适的接口电源管理电路(PMC)。ME换能器为设计低频医疗植入式设备的高效功率传输提供了有效手段,解决了尺寸小型化、更低的皮肤衰减和更高的功率传输之间的权衡。设计并制作了一种工作频率为50kHz的三层ME叠层换能器,对其源特性进行了研究。当输入磁场为2.5mT时,所提出的ME WPT器件在3kΩ负载上产生2.4V输出电压和1.75mW输出功率。提出了一种基于Dickson电荷泵、峰值检测器、降压调节器和同步电荷提取(SECE)开关技术的新型PMC设计,该设计采用低成本、现成的PCB元件实现。所提出的电路的特点是电流消耗非常低,并且专门设计用于在350mV至15V的输入电压范围内工作,这为专门针对高效率WPT系统的换能器设计提供了显着的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信