Global asymptotic stability of a class of neural networks with time varying delays

T. Ensari, S. Arik, V. Tavsanoglu
{"title":"Global asymptotic stability of a class of neural networks with time varying delays","authors":"T. Ensari, S. Arik, V. Tavsanoglu","doi":"10.1109/ISCAS.2004.1329934","DOIUrl":null,"url":null,"abstract":"This work presents a new sufficient condition for the uniqueness and global asymptotic stability (GAS) of the equilibrium point for a larger class of neural networks with time varying delays. It is shown that the use of a more general type of Lyapunov-Krasovskii functional leads to establish global asymptotic stability of a larger class of delayed neural networks that the neural network model considered in some previous papers.","PeriodicalId":6445,"journal":{"name":"2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512)","volume":"61 1","pages":"V-V"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2004.1329934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This work presents a new sufficient condition for the uniqueness and global asymptotic stability (GAS) of the equilibrium point for a larger class of neural networks with time varying delays. It is shown that the use of a more general type of Lyapunov-Krasovskii functional leads to establish global asymptotic stability of a larger class of delayed neural networks that the neural network model considered in some previous papers.
一类时变时滞神经网络的全局渐近稳定性
本文给出了一类较大的时变时滞神经网络平衡点唯一性和全局渐近稳定性的一个新的充分条件。结果表明,使用更一般类型的Lyapunov-Krasovskii泛函可以建立更大的一类延迟神经网络的全局渐近稳定性,这类神经网络模型在以前的一些论文中考虑过。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信