Self-Configuration of the Number of Concurrently Running MapReduce Jobs in a Hadoop Cluster

Bo Zhang, Filip Krikava, Romain Rouvoy, L. Seinturier
{"title":"Self-Configuration of the Number of Concurrently Running MapReduce Jobs in a Hadoop Cluster","authors":"Bo Zhang, Filip Krikava, Romain Rouvoy, L. Seinturier","doi":"10.1109/ICAC.2015.54","DOIUrl":null,"url":null,"abstract":"There is a trade-off between the number of concurrently running MapReduce jobs and their corresponding map and reduce tasks within a node in a Hadoop cluster. Leaving this trade-off statically configured to a single value can significantly reduce job response times leaving only sub optimal resource usage. To overcome this problem, we propose a feedback control loop based approach that dynamically adjusts the Hadoop resource manager configuration based on the current state of the cluster. The preliminary assessment based on workloads synthesized from real-world traces shows that the system performance can be improved by about 30% compared to default Hadoop setup.","PeriodicalId":6643,"journal":{"name":"2015 IEEE International Conference on Autonomic Computing","volume":"16 1","pages":"149-150"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Autonomic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAC.2015.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

There is a trade-off between the number of concurrently running MapReduce jobs and their corresponding map and reduce tasks within a node in a Hadoop cluster. Leaving this trade-off statically configured to a single value can significantly reduce job response times leaving only sub optimal resource usage. To overcome this problem, we propose a feedback control loop based approach that dynamically adjusts the Hadoop resource manager configuration based on the current state of the cluster. The preliminary assessment based on workloads synthesized from real-world traces shows that the system performance can be improved by about 30% compared to default Hadoop setup.
Hadoop集群MapReduce并发作业数自配置
在Hadoop集群的节点中,并发运行MapReduce作业的数量与其对应的map和reduce任务之间存在权衡。将这种权衡静态配置为单个值可以显著减少作业响应时间,只留下次优的资源使用。为了克服这个问题,我们提出了一种基于反馈控制循环的方法,该方法可以根据集群的当前状态动态调整Hadoop资源管理器配置。基于从实际跟踪中合成的工作负载的初步评估表明,与默认Hadoop设置相比,系统性能可以提高约30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信