{"title":"(Generalized) Incidence and Laplacian-Like Energies","authors":"A. D. Maden, M. T. Rahim","doi":"10.1155/2023/6205632","DOIUrl":null,"url":null,"abstract":"<jats:p>In this study, for graph <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mi mathvariant=\"normal\">Γ</mi>\n </math>\n </jats:inline-formula> with <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>r</mi>\n </math>\n </jats:inline-formula> connected components (also for connected nonbipartite and connected bipartite graphs) and a real number <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi>ε</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mo>≠</mo>\n <mn>0,1</mn>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, we found generalized and improved bounds for the sum of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi>ε</mi>\n </math>\n </jats:inline-formula>-th powers of Laplacian and signless Laplacian eigenvalues of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi mathvariant=\"normal\">Γ</mi>\n </math>\n </jats:inline-formula>. Consequently, we also generalized and improved results on incidence energy <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi mathvariant=\"normal\">I</mi>\n <mi mathvariant=\"normal\">E</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> and Laplacian energy-like invariant <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi mathvariant=\"normal\">L</mi>\n <mi mathvariant=\"normal\">E</mi>\n <mi mathvariant=\"normal\">L</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>.</jats:p>","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6205632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, for graph with connected components (also for connected nonbipartite and connected bipartite graphs) and a real number , we found generalized and improved bounds for the sum of -th powers of Laplacian and signless Laplacian eigenvalues of . Consequently, we also generalized and improved results on incidence energy and Laplacian energy-like invariant .