(Generalized) Incidence and Laplacian-Like Energies

IF 0.7 Q2 MATHEMATICS
A. D. Maden, M. T. Rahim
{"title":"(Generalized) Incidence and Laplacian-Like Energies","authors":"A. D. Maden, M. T. Rahim","doi":"10.1155/2023/6205632","DOIUrl":null,"url":null,"abstract":"<jats:p>In this study, for graph <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mi mathvariant=\"normal\">Γ</mi>\n </math>\n </jats:inline-formula> with <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>r</mi>\n </math>\n </jats:inline-formula> connected components (also for connected nonbipartite and connected bipartite graphs) and a real number <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi>ε</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mo>≠</mo>\n <mn>0,1</mn>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, we found generalized and improved bounds for the sum of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi>ε</mi>\n </math>\n </jats:inline-formula>-th powers of Laplacian and signless Laplacian eigenvalues of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi mathvariant=\"normal\">Γ</mi>\n </math>\n </jats:inline-formula>. Consequently, we also generalized and improved results on incidence energy <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi mathvariant=\"normal\">I</mi>\n <mi mathvariant=\"normal\">E</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> and Laplacian energy-like invariant <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi mathvariant=\"normal\">L</mi>\n <mi mathvariant=\"normal\">E</mi>\n <mi mathvariant=\"normal\">L</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>.</jats:p>","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6205632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, for graph Γ with r connected components (also for connected nonbipartite and connected bipartite graphs) and a real number ε 0,1 , we found generalized and improved bounds for the sum of ε -th powers of Laplacian and signless Laplacian eigenvalues of Γ . Consequently, we also generalized and improved results on incidence energy I E and Laplacian energy-like invariant L E L .
(广义)关联和类拉普拉斯能量
在这项研究中,对于具有r连通分量的图Γ(也适用于连通非二部图和连通二部图),且实数ε≠0,1得到了Γ的拉普拉斯特征值和无符号拉普拉斯特征值ε -幂和的广义和改进界。因此,我们还推广和改进了有关入射能E和拉普拉斯类能不变量L E L的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信