{"title":"NON-HERMITIAN SKIN EFFECT AND DELOCALIZED EDGE STATES IN PHOTONIC CRYSTALS WITH ANOMALOUS PARITY-TIME SYMMETRY","authors":"Qinghui Yan, Hongsheng Chen, Yihao Yang","doi":"10.2528/pier21111602","DOIUrl":null,"url":null,"abstract":"Non-Hermitian skin effect denotes the exponential localization of a large number of eigen-states in a non-Hermitian lattice under open boundary conditions. Such a non-Hermiticity-induced skin effect can offset the penetration depth of in-gap edge states, leading to counterintuitive delocalized edge modes, which have not been studied in a realistic photonic system such as photonic crystals. Here, we analytically reveal the non-Hermitian skin effect and the delocalized edge states in Maxwell's equations for non-Hermitian chiral photonic crystals with anomalous parity-time symmetry. Remarkably, we rigorously prove that the penetration depth of the edge states is inversely proportional to the frequency and the real part of the chirality. Our findings pave a way towards exploring novel non-Hermitian phenomena and applications in continuous Maxwell's equations.","PeriodicalId":90705,"journal":{"name":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2528/pier21111602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Non-Hermitian skin effect denotes the exponential localization of a large number of eigen-states in a non-Hermitian lattice under open boundary conditions. Such a non-Hermiticity-induced skin effect can offset the penetration depth of in-gap edge states, leading to counterintuitive delocalized edge modes, which have not been studied in a realistic photonic system such as photonic crystals. Here, we analytically reveal the non-Hermitian skin effect and the delocalized edge states in Maxwell's equations for non-Hermitian chiral photonic crystals with anomalous parity-time symmetry. Remarkably, we rigorously prove that the penetration depth of the edge states is inversely proportional to the frequency and the real part of the chirality. Our findings pave a way towards exploring novel non-Hermitian phenomena and applications in continuous Maxwell's equations.