Thermal Performance Analysis of a Novel U-Tube Evacuated Tube Solar Collector

C. Lim, Vivek R. Pawar, Sarvenaz Sobhansarbandi
{"title":"Thermal Performance Analysis of a Novel U-Tube Evacuated Tube Solar Collector","authors":"C. Lim, Vivek R. Pawar, Sarvenaz Sobhansarbandi","doi":"10.1115/es2020-1674","DOIUrl":null,"url":null,"abstract":"\n Solar water heating (SWH) systems are the most common application of renewable energy technology that converts solar radiation into useful energy for domestic/industrial activities. The novelty of this study is the design of a new SWH that combines the heat transfer and storage both in a single unit. The selected type of collector for this purpose is an evacuated tube solar collector (ETC). The new design of the ETC has been developed by applying a U-tube inside the collector which contains the heat transfer fluid (HTF). The HTF flows into an external heat exchanger that transfers heat to the water. The implementation of sugar alcohol namely Erythritol (C4H10O4) as the HTF for moderate operating temperature applications was investigated. Moreover, the utilization of solid-liquid phase change material, Tritriacontane paraffin (C33H68), inside the ETC, allows direct heat storage on the system and delayed release of heat. A computational fluid dynamics (CFD) modeling of a single U-tube ETC is performed using ANSYS Fluent in stagnation (on-demand) operation. A 3D model of the ETC is developed and the appropriate boundary conditions are applied. Moreover, the thermal performance comparison of U-tube vs heat pipe ETC has been done. The results from this study shows the maximum fin temperature difference of 46°C of U-tube ETC compared with heat pipe ETC.","PeriodicalId":8602,"journal":{"name":"ASME 2020 14th International Conference on Energy Sustainability","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2020 14th International Conference on Energy Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/es2020-1674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Solar water heating (SWH) systems are the most common application of renewable energy technology that converts solar radiation into useful energy for domestic/industrial activities. The novelty of this study is the design of a new SWH that combines the heat transfer and storage both in a single unit. The selected type of collector for this purpose is an evacuated tube solar collector (ETC). The new design of the ETC has been developed by applying a U-tube inside the collector which contains the heat transfer fluid (HTF). The HTF flows into an external heat exchanger that transfers heat to the water. The implementation of sugar alcohol namely Erythritol (C4H10O4) as the HTF for moderate operating temperature applications was investigated. Moreover, the utilization of solid-liquid phase change material, Tritriacontane paraffin (C33H68), inside the ETC, allows direct heat storage on the system and delayed release of heat. A computational fluid dynamics (CFD) modeling of a single U-tube ETC is performed using ANSYS Fluent in stagnation (on-demand) operation. A 3D model of the ETC is developed and the appropriate boundary conditions are applied. Moreover, the thermal performance comparison of U-tube vs heat pipe ETC has been done. The results from this study shows the maximum fin temperature difference of 46°C of U-tube ETC compared with heat pipe ETC.
新型u型真空管太阳能集热器的热性能分析
太阳能热水系统是可再生能源技术的最常见应用,它将太阳辐射转化为家庭/工业活动的有用能源。这项研究的新颖之处在于设计了一种新的SWH,它将热量传递和储存结合在一个单元中。为此选择的集热器类型是真空管太阳能集热器(ETC)。ETC的新设计是在集热器内安装一个u型管,其中包含传热流体(HTF)。HTF流入外部热交换器,将热量传递给水。研究了糖醇即赤藓糖醇(C4H10O4)作为HTF在中等工作温度下的应用。此外,在ETC内部使用固-液相变材料三三康烷石蜡(C33H68),可以在系统上直接储热,延迟热量释放。利用ANSYS Fluent软件对单u管ETC进行了滞止(按需)工况下的计算流体动力学(CFD)建模。建立了三维电子传动系统模型,并应用了相应的边界条件。并对u型管和热管ETC的热性能进行了比较。研究结果表明,u型管ETC与热管ETC的最大翅片温差为46℃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信