Ball comparison between frozen Potra and Schmidt–Schwetlick schemes with dynamical analysis

IF 0.9 Q3 MATHEMATICS, APPLIED
Michael Argyros, Ioannis K. Argyros, Daniel González, Ángel Alberto Magreñán, Alejandro Moysi, Íñigo Sarría
{"title":"Ball comparison between frozen Potra and Schmidt–Schwetlick schemes with dynamical analysis","authors":"Michael Argyros,&nbsp;Ioannis K. Argyros,&nbsp;Daniel González,&nbsp;Ángel Alberto Magreñán,&nbsp;Alejandro Moysi,&nbsp;Íñigo Sarría","doi":"10.1002/cmm4.1186","DOIUrl":null,"url":null,"abstract":"<p>In this article, we propose a new research related to the convergence of the frozen Potra and Schmidt–Schwetlick schemes when we apply to equations. The purpose of this study is to introduce a comparison between two solutions to equations under the same conditions. In particular, we show the convergence radius and the uniqueness ball coincidence, while the error estimates are generally different. In this work, we extended the local convergence for Banach space valued operators using only the divided difference of order one and the first derivative of the schemes. This is a great advantage since we improve convergence by avoiding calculating higher-order derivatives that can either be difficult or not even exist. On the other hand, we also present a dynamical study of the behavior of a method compared with its no frozen alternative in order to see the behavior of both. We will study the basins of attraction of the two methods to three different polynomials involving two real, three real, and two real and two complex different solutions.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmm4.1186","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we propose a new research related to the convergence of the frozen Potra and Schmidt–Schwetlick schemes when we apply to equations. The purpose of this study is to introduce a comparison between two solutions to equations under the same conditions. In particular, we show the convergence radius and the uniqueness ball coincidence, while the error estimates are generally different. In this work, we extended the local convergence for Banach space valued operators using only the divided difference of order one and the first derivative of the schemes. This is a great advantage since we improve convergence by avoiding calculating higher-order derivatives that can either be difficult or not even exist. On the other hand, we also present a dynamical study of the behavior of a method compared with its no frozen alternative in order to see the behavior of both. We will study the basins of attraction of the two methods to three different polynomials involving two real, three real, and two real and two complex different solutions.

冻结Potra和Schmidt-Schwetlick方案的动力学比较
在本文中,我们提出了一个关于冻结Potra格式和schmidt - schwelick格式在应用于方程时的收敛性的新研究。本研究的目的是介绍在相同条件下方程的两种解之间的比较。特别是,我们证明了收敛半径和唯一性球重合,而误差估计一般是不同的。本文仅利用一阶差分和一阶导数推广了Banach空间值算子的局部收敛性。这是一个很大的优势,因为我们通过避免计算高阶导数来提高收敛性,而高阶导数要么很难计算,要么根本不存在。另一方面,为了观察两者的行为,我们还提出了一种方法的动态行为研究,将其与无冻结的替代方法进行比较。我们将研究这两种方法对涉及两个实数、三个实数、两个实数和两个复不同解的三种不同多项式的吸引盆地。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信