RoSELS: Road Surface Extraction for 3D Automotive LiDAR Point Cloud Sequence

Dhvani Katkoria, Jaya Sreevalsan-Nair
{"title":"RoSELS: Road Surface Extraction for 3D Automotive LiDAR Point Cloud Sequence","authors":"Dhvani Katkoria, Jaya Sreevalsan-Nair","doi":"10.5220/0011301700003277","DOIUrl":null,"url":null,"abstract":": Road surface geometry provides information about navigable space in autonomous driving. Ground plane estimation is done on “road” points after semantic segmentation of three-dimensional (3D) automotive LiDAR point clouds as a precursor to this geometry extraction. However, the actual geometry extraction is less explored, as it is expensive to use all “road” points for mesh generation. Thus, we propose a coarser surface approximation using road edge points. The geometry extraction for the entire sequence of a trajectory provides the complete road geometry, from the point of view of the ego-vehicle. Thus, we propose an automated system, RoSELS (Road Surface Extraction for LiDAR point cloud Sequence). Our novel approach involves ground point detection and road geometry classification, i.e. frame classification , for determining the road edge points. We use appropriate supervised and pre-trained transfer learning models, along with computational geometry algorithms to implement the workflow. Our results on SemanticKITTI show that our extracted road surface for the sequence is qualitatively and quantitatively close to the reference trajectory.","PeriodicalId":88612,"journal":{"name":"News. Phi Delta Epsilon","volume":"11 1","pages":"55-67"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"News. Phi Delta Epsilon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0011301700003277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: Road surface geometry provides information about navigable space in autonomous driving. Ground plane estimation is done on “road” points after semantic segmentation of three-dimensional (3D) automotive LiDAR point clouds as a precursor to this geometry extraction. However, the actual geometry extraction is less explored, as it is expensive to use all “road” points for mesh generation. Thus, we propose a coarser surface approximation using road edge points. The geometry extraction for the entire sequence of a trajectory provides the complete road geometry, from the point of view of the ego-vehicle. Thus, we propose an automated system, RoSELS (Road Surface Extraction for LiDAR point cloud Sequence). Our novel approach involves ground point detection and road geometry classification, i.e. frame classification , for determining the road edge points. We use appropriate supervised and pre-trained transfer learning models, along with computational geometry algorithms to implement the workflow. Our results on SemanticKITTI show that our extracted road surface for the sequence is qualitatively and quantitatively close to the reference trajectory.
面向3D汽车激光雷达点云序列的路面提取
:路面几何形状提供了自动驾驶中可导航空间的信息。在对三维(3D)汽车激光雷达点云进行语义分割后,对“道路”点进行地平面估计,作为该几何形状提取的先驱。然而,实际的几何形状提取较少探索,因为使用所有“道路”点进行网格生成是昂贵的。因此,我们提出了一个使用道路边缘点的粗糙表面近似。从自我车辆的角度来看,整个轨迹序列的几何提取提供了完整的道路几何。因此,我们提出了一个自动化系统,RoSELS(道路表面提取激光雷达点云序列)。我们的新方法涉及地面点检测和道路几何分类,即框架分类,以确定道路边缘点。我们使用适当的监督和预训练迁移学习模型,以及计算几何算法来实现工作流。我们在SemanticKITTI上的结果表明,我们为序列提取的路面在定性和定量上都接近参考轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信