Beyond Talagrand functions: new lower bounds for testing monotonicity and unateness

Xi Chen, Erik Waingarten, Jinyu Xie
{"title":"Beyond Talagrand functions: new lower bounds for testing monotonicity and unateness","authors":"Xi Chen, Erik Waingarten, Jinyu Xie","doi":"10.1145/3055399.3055461","DOIUrl":null,"url":null,"abstract":"We prove a lower bound of Ω(n1/3) for the query complexity of any two-sided and adaptive algorithm that tests whether an unknown Boolean function f:{0,1}n→ {0,1} is monotone versus far from monotone. This improves the recent lower bound of Ω(n1/4) for the same problem by Belovs and Blais (STOC'16). Our result builds on a new family of random Boolean functions that can be viewed as a two-level extension of Talagrand's random DNFs. Beyond monotonicity we prove a lower bound of Ω(√n) for two-sided, adaptive algorithms and a lower bound of Ω(n) for one-sided, non-adaptive algorithms for testing unateness, a natural generalization of monotonicity. The latter matches the linear upper bounds by Khot and Shinkar (RANDOM'16) and by Baleshzar, Chakrabarty, Pallavoor, Raskhodnikova, and Seshadhri (2017).","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"410 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

We prove a lower bound of Ω(n1/3) for the query complexity of any two-sided and adaptive algorithm that tests whether an unknown Boolean function f:{0,1}n→ {0,1} is monotone versus far from monotone. This improves the recent lower bound of Ω(n1/4) for the same problem by Belovs and Blais (STOC'16). Our result builds on a new family of random Boolean functions that can be viewed as a two-level extension of Talagrand's random DNFs. Beyond monotonicity we prove a lower bound of Ω(√n) for two-sided, adaptive algorithms and a lower bound of Ω(n) for one-sided, non-adaptive algorithms for testing unateness, a natural generalization of monotonicity. The latter matches the linear upper bounds by Khot and Shinkar (RANDOM'16) and by Baleshzar, Chakrabarty, Pallavoor, Raskhodnikova, and Seshadhri (2017).
超越talagand函数:检验单调性和单调性的新下界
我们证明了任意检验未知布尔函数f:{0,1}n→{0,1}是否为单调与远非单调的双边自适应算法查询复杂度的下界Ω(n1/3)。这改进了最近Belovs和Blais (STOC'16)对相同问题的Ω(n /4)的下界。我们的结果建立在一组新的随机布尔函数的基础上,这些随机布尔函数可以看作是Talagrand随机dnf的两级扩展。除了单调性之外,我们证明了双面自适应算法的下界Ω(√n)和单面非自适应算法的下界Ω(n),用于测试单调性,这是单调性的自然推广。后者与Khot和Shinkar (RANDOM'16)以及Baleshzar、Chakrabarty、Pallavoor、Raskhodnikova和Seshadhri(2017)的线性上界相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信