Frame measures for infinitely many measures

F. Farhadi, M. Asgari, M. Mardanbeigi
{"title":"Frame measures for infinitely many measures","authors":"F. Farhadi, M. Asgari, M. Mardanbeigi","doi":"10.1285/I15900932V40N1P115","DOIUrl":null,"url":null,"abstract":"For every frame spectral measure $ \\mu $, there exists a discrete measure $ \\nu $ as a frame measure. Since if $ \\mu $ is not a frame spectral measure, then there is not any general statement about the existence of frame measures $ \\nu $ for $ \\mu $, we were motivated to examine Bessel and frame measures. We construct infinitely many measures $ \\mu $ which admit frame measures $ \\nu $, and we show that there exist infinitely many frame spectral measures $ \\mu $ such that besides having a discrete frame measure, they admit continuous frame measures too.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1285/I15900932V40N1P115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For every frame spectral measure $ \mu $, there exists a discrete measure $ \nu $ as a frame measure. Since if $ \mu $ is not a frame spectral measure, then there is not any general statement about the existence of frame measures $ \nu $ for $ \mu $, we were motivated to examine Bessel and frame measures. We construct infinitely many measures $ \mu $ which admit frame measures $ \nu $, and we show that there exist infinitely many frame spectral measures $ \mu $ such that besides having a discrete frame measure, they admit continuous frame measures too.
对无穷多个测度进行框架测度
对于每一个帧谱测度$ \mu $,都存在一个离散测度$ \nu $作为帧测度。因为如果$ \mu $不是帧谱测度,那么对于$ \mu $就没有关于帧测度$ \nu $存在的一般陈述,我们被激励去检验贝塞尔和帧测度。我们构造了无限多的允许帧测度的测度$ \mu $$ \nu $,并证明了存在无限多的帧谱测度$ \mu $,使得它们除了具有离散的帧测度外,还具有连续的帧测度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信