{"title":"Explaining Entity Resolution Predictions: Where are we and What needs to be done?","authors":"Saravanan Thirumuruganathan, M. Ouzzani, N. Tang","doi":"10.1145/3328519.3329130","DOIUrl":null,"url":null,"abstract":"Entity resolution (ER) seeks to identify the set of tuples in a dataset that refer to the same real-world entity. It is one of the fundamental and well studied problems in data integration with applications in diverse domains such as banking, insurance, e-commerce, and so on. Machine Learning and Deep Learning based methods provide the state-of-the-art results. For practitioners, it is often challenging to understand why the classifier made a particular prediction. While there has been extensive work in the ML community on explaining classifier predictions, we found that a direct application of those techniques is not appropriate for ER. There is a huge gap between the needs of lay ER practitioners and the explanation community. In this paper, we provide a comprehensive taxonomy of these challenges, discuss research opportunities and propose preliminary solutions.","PeriodicalId":92279,"journal":{"name":"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3328519.3329130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
Entity resolution (ER) seeks to identify the set of tuples in a dataset that refer to the same real-world entity. It is one of the fundamental and well studied problems in data integration with applications in diverse domains such as banking, insurance, e-commerce, and so on. Machine Learning and Deep Learning based methods provide the state-of-the-art results. For practitioners, it is often challenging to understand why the classifier made a particular prediction. While there has been extensive work in the ML community on explaining classifier predictions, we found that a direct application of those techniques is not appropriate for ER. There is a huge gap between the needs of lay ER practitioners and the explanation community. In this paper, we provide a comprehensive taxonomy of these challenges, discuss research opportunities and propose preliminary solutions.