Accelerated Wound Healing by a Topical Wound Healing Lipogel in Patients Undergoing Catheter De-placement - Evidence from a Randomized, Controlled Clinical Study
{"title":"Accelerated Wound Healing by a Topical Wound Healing Lipogel in Patients Undergoing Catheter De-placement - Evidence from a Randomized, Controlled Clinical Study","authors":"T. Eberlein, S. Siam","doi":"10.11648/J.JS.20200802.12","DOIUrl":null,"url":null,"abstract":"Objective: The purpose of this clinical study was to assess a novel wound model and to compare the wound healing properties of a topical wound healing hydroactive lipogel (MediGel®) promoting moist wound environment versus standard treatment by a standard plaster und dry environmental conditions in patients undergoing catheter de-placement as a model for non-acute wounds affecting all skin layers in real life conditions (moist environment does improve granulation & epithelialization supported by Lipogel – the MEDIGEL trial). Methods: Patients (n=69) admitted to the dialysis ward of a tertiary care institution with acute or chronic renal insufficiency and in need for dialysis were enrolled into a prospective, observer-blind, randomized, controlled, inter-individual experimental comparison study. Patients enrolled were undergoing placement of Sheldon multi-lumen catheter (11 French diameter) in the external jugular vein at the neck by Seldinger technique to enable access for hemodialysis. One group of patients which had catheter displaced after one session of hemodialysis was regarded as acute wound group. A different group of patients had catheter withdrawn after 14 (+/- 2 days) and was classified as non-acute wound group. Topical treatments were randomly allocated, i.e. traditional care with standard plaster (control group) or investigational product (promoting moist environment) beneath a standard plaster (investigational product). Wound healing was assessed (digital photography, visual scoring) and analyzed via comparison of area under curve at day 0, 3 and 7 after displacement of catheter. Results: Evaluation showed significantly faster wound healing results for the investigational product in comparison to standard (all time points) and with significant AUC difference in both patient groups, acute and non-acute. Visible re-epithelialization was recorded from day 3 to day 7 in acute wounds, delayed in non-acute wounds. Standard plaster-treated wounds remained open and had markedly larger wound area. Formation of fibrous scar tissue was minimal but less prominent in patients treated with the hydroactive lipogel in the non-acute group due to faster epithelialization promoted by moist environment. Conclusion: Clinically relevant accelerated epithelialization and faster wound healing were observed for the investigational product compared to traditional treatment indicating superiority of moist wound environmental conditions both in acute and non-acute wounds after displacement of catheter placed into the jugular vein for 5 hours or 2 weeks in patients undergoing hemodialysis. The model is an innovative approach to study acute and non-acute wounds affecting all three skin layers and should be further investigated.","PeriodicalId":101237,"journal":{"name":"The Journal of Surgery","volume":"8 1","pages":"48"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Surgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.JS.20200802.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: The purpose of this clinical study was to assess a novel wound model and to compare the wound healing properties of a topical wound healing hydroactive lipogel (MediGel®) promoting moist wound environment versus standard treatment by a standard plaster und dry environmental conditions in patients undergoing catheter de-placement as a model for non-acute wounds affecting all skin layers in real life conditions (moist environment does improve granulation & epithelialization supported by Lipogel – the MEDIGEL trial). Methods: Patients (n=69) admitted to the dialysis ward of a tertiary care institution with acute or chronic renal insufficiency and in need for dialysis were enrolled into a prospective, observer-blind, randomized, controlled, inter-individual experimental comparison study. Patients enrolled were undergoing placement of Sheldon multi-lumen catheter (11 French diameter) in the external jugular vein at the neck by Seldinger technique to enable access for hemodialysis. One group of patients which had catheter displaced after one session of hemodialysis was regarded as acute wound group. A different group of patients had catheter withdrawn after 14 (+/- 2 days) and was classified as non-acute wound group. Topical treatments were randomly allocated, i.e. traditional care with standard plaster (control group) or investigational product (promoting moist environment) beneath a standard plaster (investigational product). Wound healing was assessed (digital photography, visual scoring) and analyzed via comparison of area under curve at day 0, 3 and 7 after displacement of catheter. Results: Evaluation showed significantly faster wound healing results for the investigational product in comparison to standard (all time points) and with significant AUC difference in both patient groups, acute and non-acute. Visible re-epithelialization was recorded from day 3 to day 7 in acute wounds, delayed in non-acute wounds. Standard plaster-treated wounds remained open and had markedly larger wound area. Formation of fibrous scar tissue was minimal but less prominent in patients treated with the hydroactive lipogel in the non-acute group due to faster epithelialization promoted by moist environment. Conclusion: Clinically relevant accelerated epithelialization and faster wound healing were observed for the investigational product compared to traditional treatment indicating superiority of moist wound environmental conditions both in acute and non-acute wounds after displacement of catheter placed into the jugular vein for 5 hours or 2 weeks in patients undergoing hemodialysis. The model is an innovative approach to study acute and non-acute wounds affecting all three skin layers and should be further investigated.