Alexander C. Abad, Manex Ormazabal, David Reid, Anuradha Ranasinghe
{"title":"An Untethered Multimodal Haptic Hand Wearable","authors":"Alexander C. Abad, Manex Ormazabal, David Reid, Anuradha Ranasinghe","doi":"10.1109/SENSORS47087.2021.9639526","DOIUrl":null,"url":null,"abstract":"Haptic primary colors correspond to temperature, vibration, and force. Previous studies combined these three haptic primary colors to produce different types of cutaneous sensations without the need to touch a real object. This study presents a low-cost untethered hand wearable with temperature, vibration, and force feedback. It is made from low-cost and commercial off-the-shelf components. A 26 mm annular Peltier element with a 10 mm hole is coupled to an 8 mm mini disc vibration motor, forming vibro-thermal tactile feedback for the user. All the other fingertips have an 8 mm disc vibration motor strapped on them using Velcro. Moreover, kinesthetic feedback extracted from a retractable ID badge holder with a small solenoid stopper is used as force feedback that restricts the fingers’ movement. Hand and finger tracking is done using Leap Motion Controller interfaced to a virtual setup with different geometric figures developed using Unity software. Therefore, we argue this prototype as a whole actuates cutaneous and kinesthetic feedback that would be useful in many virtual applications such as Virtual Reality (VR), teleoperated surgeries, and teleoperated farming and agriculture.","PeriodicalId":6775,"journal":{"name":"2021 IEEE Sensors","volume":"28 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS47087.2021.9639526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Haptic primary colors correspond to temperature, vibration, and force. Previous studies combined these three haptic primary colors to produce different types of cutaneous sensations without the need to touch a real object. This study presents a low-cost untethered hand wearable with temperature, vibration, and force feedback. It is made from low-cost and commercial off-the-shelf components. A 26 mm annular Peltier element with a 10 mm hole is coupled to an 8 mm mini disc vibration motor, forming vibro-thermal tactile feedback for the user. All the other fingertips have an 8 mm disc vibration motor strapped on them using Velcro. Moreover, kinesthetic feedback extracted from a retractable ID badge holder with a small solenoid stopper is used as force feedback that restricts the fingers’ movement. Hand and finger tracking is done using Leap Motion Controller interfaced to a virtual setup with different geometric figures developed using Unity software. Therefore, we argue this prototype as a whole actuates cutaneous and kinesthetic feedback that would be useful in many virtual applications such as Virtual Reality (VR), teleoperated surgeries, and teleoperated farming and agriculture.