{"title":"High rank elliptic curves induced by rational Diophantine triples","authors":"A. Dujella, J. C. Peral","doi":"10.3336/gm.55.2.05","DOIUrl":null,"url":null,"abstract":"A rational Diophantine triple is a set of three nonzero rational a,b,c with the property that ab+1, ac+1, bc+1 are perfect squares. We say that the elliptic curve y2 = (ax+1)(bx+1)(cx+1) is induced by the triple {a,b,c}. In this paper, we describe a new method for construction of elliptic curves over ℚ with reasonably high rank based on a parametrization of rational Diophantine triples. In particular, we construct an elliptic curve induced by a rational Diophantine triple with rank equal to 12, and an infinite family of such curves with rank ≥ 7, which are both the current records for that kind of curves.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.55.2.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
A rational Diophantine triple is a set of three nonzero rational a,b,c with the property that ab+1, ac+1, bc+1 are perfect squares. We say that the elliptic curve y2 = (ax+1)(bx+1)(cx+1) is induced by the triple {a,b,c}. In this paper, we describe a new method for construction of elliptic curves over ℚ with reasonably high rank based on a parametrization of rational Diophantine triples. In particular, we construct an elliptic curve induced by a rational Diophantine triple with rank equal to 12, and an infinite family of such curves with rank ≥ 7, which are both the current records for that kind of curves.