S. Caracciolo, Giorgio Parisi, S. Patarnello, N. Sourlas
{"title":"Low temperature behaviour of 3-D spin glasses in a magnetic field","authors":"S. Caracciolo, Giorgio Parisi, S. Patarnello, N. Sourlas","doi":"10.1051/JPHYS:0199000510170187700","DOIUrl":null,"url":null,"abstract":"We present the results of two sets of numerical simulations of 3-d Ising spin-glasses in the presence of an uniform magnetic field. In the first set, among other quantities, we compute the spin-spin overlap probability distribution P(q), the link-link overlap probability distribution P e (q e ) and the spin-glass susceptibility χ SG for different volumes and temperatures. The results are in good agreement with mean-field behaviour: P(q) and P e (q e ) are non trivial and non self-averaging and χ SG shows an increase with the linear size L of the system as χ SG ∼Lω. Our estimate is ω=1,8±0.25 at T=0.83. In the second set of simulations a small coupling ∈ is introduced between two copies of the system and the copy overlap Q(e) is computed as a function of e. Q(e) becomes steeper around e∼0 as L increases, in agreement with the previous set of simulations. Our data seem anyhow incompatible with the alternatives to mean-field theory proposed so far Nous presentons les resultats de deux ensembles de simulations numeriques de verres de spins d'Ising tridimensionnels en presence d'un champ magnetique. Dans le premier ensemble nous calculons, entre autres quantites, la distribution de probabilite du recouvrement des configurations des spins P (q), la distribution de probabilite du recouvrement des configurations des liens P e (q e ) et la susceptibilite verre de spin X SG pour differents volumes et temperatures. Les resultats sont en bon accord avec la theorie du champ moyen: P(q) et P e (q e ) sont non triviaux et non automoyennants et χ SG augmente avec la taille lineaire L du systeme comme χ SG ∼Lω. Nous estimons ω=1,8±0,25 a T=0,83. Dans le deuxieme ensemble de simulations nous introduisons un petit couplage e entre deux copies du systeme et leur recouvrement Q (e) est calcule en fonction d'e• La pente de Q(e) a l'origine augmente avec L, en accord avec les autres simulations","PeriodicalId":14747,"journal":{"name":"Journal De Physique","volume":"58 1","pages":"1877-1895"},"PeriodicalIF":0.0000,"publicationDate":"1990-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Physique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/JPHYS:0199000510170187700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33
Abstract
We present the results of two sets of numerical simulations of 3-d Ising spin-glasses in the presence of an uniform magnetic field. In the first set, among other quantities, we compute the spin-spin overlap probability distribution P(q), the link-link overlap probability distribution P e (q e ) and the spin-glass susceptibility χ SG for different volumes and temperatures. The results are in good agreement with mean-field behaviour: P(q) and P e (q e ) are non trivial and non self-averaging and χ SG shows an increase with the linear size L of the system as χ SG ∼Lω. Our estimate is ω=1,8±0.25 at T=0.83. In the second set of simulations a small coupling ∈ is introduced between two copies of the system and the copy overlap Q(e) is computed as a function of e. Q(e) becomes steeper around e∼0 as L increases, in agreement with the previous set of simulations. Our data seem anyhow incompatible with the alternatives to mean-field theory proposed so far Nous presentons les resultats de deux ensembles de simulations numeriques de verres de spins d'Ising tridimensionnels en presence d'un champ magnetique. Dans le premier ensemble nous calculons, entre autres quantites, la distribution de probabilite du recouvrement des configurations des spins P (q), la distribution de probabilite du recouvrement des configurations des liens P e (q e ) et la susceptibilite verre de spin X SG pour differents volumes et temperatures. Les resultats sont en bon accord avec la theorie du champ moyen: P(q) et P e (q e ) sont non triviaux et non automoyennants et χ SG augmente avec la taille lineaire L du systeme comme χ SG ∼Lω. Nous estimons ω=1,8±0,25 a T=0,83. Dans le deuxieme ensemble de simulations nous introduisons un petit couplage e entre deux copies du systeme et leur recouvrement Q (e) est calcule en fonction d'e• La pente de Q(e) a l'origine augmente avec L, en accord avec les autres simulations
本文给出了均匀磁场作用下三维伊辛自旋玻璃的两组数值模拟结果。在第一组中,我们计算了不同体积和温度下的自旋-自旋重叠概率分布P(q)、链路-链路重叠概率分布pe (q e)和自旋-玻璃磁化率χ SG。结果很好地符合平均场行为:P(q)和pe (q e)是非平凡的和非自平均的,并且χ SG随着系统的线性大小L (χ SG ~ Lω)而增加。我们估计在T=0.83时ω= 1.8±0.25。在第二组模拟中,在系统的两个副本之间引入了一个小的耦合∈,并且复制重叠Q(e)作为e的函数计算。随着L的增加,Q(e)在e ~ 0附近变得更陡,与前一组模拟一致。无论如何,我们的数据似乎与迄今为止提出的平均场理论的替代方案不相容:Nous提出的结果是:deux ensembles、desimulation、numerques、de verres、de spins、d'Ising三维空间、en presence、d' champ magnetique。在不同的体积和温度下,我们得到了最基本的系综物理计算,中心量,自旋的概率分布P (q),自旋的概率分布P (q),自旋的磁化率分布P (q)和自旋的磁化率X (SG)。结果表明:P(q) et P(q) et P(q) et P(q) sont non triviaux et non - automoyants et χ SG增强平均值la tailleaire L du system comme χ SG ~ Lω。努斯估计ω=1,8±0,25 a T=0,83。本文提出了一种基于小耦合的双副本系统集成仿真方法,并引入了双副本系统的最小补偿Q(e)和计算函数Q(e),并给出了最小补偿Q(e)和原始增强平均值l,符合最小补偿仿真