Subquadratic Algorithms for Some 3Sum-Hard Geometric Problems in the Algebraic Decision Tree Model

B. Aronov, M. D. Berg, J. Cardinal, Esther Ezra, J. Iacono, M. Sharir
{"title":"Subquadratic Algorithms for Some 3Sum-Hard Geometric Problems in the Algebraic Decision Tree Model","authors":"B. Aronov, M. D. Berg, J. Cardinal, Esther Ezra, J. Iacono, M. Sharir","doi":"10.4230/LIPIcs.ISAAC.2021.3","DOIUrl":null,"url":null,"abstract":"We present subquadratic algorithms in the algebraic decision-tree model for several \\textsc{3Sum}-hard geometric problems, all of which can be reduced to the following question: Given two sets $A$, $B$, each consisting of $n$ pairwise disjoint segments in the plane, and a set $C$ of $n$ triangles in the plane, we want to count, for each triangle $\\Delta\\in C$, the number of intersection points between the segments of $A$ and those of $B$ that lie in $\\Delta$. The problems considered in this paper have been studied by Chan~(2020), who gave algorithms that solve them, in the standard real-RAM model, in $O((n^2/\\log^2n)\\log^{O(1)}\\log n)$ time. We present solutions in the algebraic decision-tree model whose cost is $O(n^{60/31+\\varepsilon})$, for any $\\varepsilon>0$. Our approach is based on a primal-dual range searching mechanism, which exploits the multi-level polynomial partitioning machinery recently developed by Agarwal, Aronov, Ezra, and Zahl~(2020). A key step in the procedure is a variant of point location in arrangements, say of lines in the plane, which is based solely on the \\emph{order type} of the lines, a\"handicap\"that turns out to be beneficial for speeding up our algorithm.","PeriodicalId":11245,"journal":{"name":"Discret. Comput. Geom.","volume":"42 1","pages":"101945"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Comput. Geom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.ISAAC.2021.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present subquadratic algorithms in the algebraic decision-tree model for several \textsc{3Sum}-hard geometric problems, all of which can be reduced to the following question: Given two sets $A$, $B$, each consisting of $n$ pairwise disjoint segments in the plane, and a set $C$ of $n$ triangles in the plane, we want to count, for each triangle $\Delta\in C$, the number of intersection points between the segments of $A$ and those of $B$ that lie in $\Delta$. The problems considered in this paper have been studied by Chan~(2020), who gave algorithms that solve them, in the standard real-RAM model, in $O((n^2/\log^2n)\log^{O(1)}\log n)$ time. We present solutions in the algebraic decision-tree model whose cost is $O(n^{60/31+\varepsilon})$, for any $\varepsilon>0$. Our approach is based on a primal-dual range searching mechanism, which exploits the multi-level polynomial partitioning machinery recently developed by Agarwal, Aronov, Ezra, and Zahl~(2020). A key step in the procedure is a variant of point location in arrangements, say of lines in the plane, which is based solely on the \emph{order type} of the lines, a"handicap"that turns out to be beneficial for speeding up our algorithm.
代数决策树模型中若干3和难几何问题的次二次算法
针对几个\textsc{3Sum}-hard几何问题,我们提出了代数决策树模型中的次二次算法,所有这些问题都可以归结为以下问题:给定两个集合$A$, $B$,每个集合都由平面上的$n$成对不相交的段组成,以及平面上$n$三角形的集合$C$,我们想要对每个三角形$\Delta\in C$计算$A$和$\Delta$中$B$的段之间的交点个数。本文中考虑的问题已经由Chan(2020)进行了研究,他给出了在$O((n^2/\log^2n)\log^{O(1)}\log n)$时间内在标准real-RAM模型中解决这些问题的算法。对于任意$\varepsilon>0$,我们给出了代价为$O(n^{60/31+\varepsilon})$的代数决策树模型的解。我们的方法基于原始对偶范围搜索机制,该机制利用了Agarwal、Aronov、Ezra和Zahl(2020)最近开发的多级多项式划分机制。这个过程中的一个关键步骤是排列中的点位置的变体,比如平面上的线,它完全基于线的\emph{顺序类型},这是一个有利于加快我们算法的“障碍”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信