Higher genus relative and orbifold Gromov–Witten invariants

IF 2 1区 数学
Hsian-Hua Tseng, F. You
{"title":"Higher genus relative and orbifold Gromov–Witten\ninvariants","authors":"Hsian-Hua Tseng, F. You","doi":"10.2140/gt.2020.24.2749","DOIUrl":null,"url":null,"abstract":"Given a smooth target curve $X$, we explore the relationship between Gromov-Witten invariants of $X$ relative to a smooth divisor and orbifold Gromov-Witten invariants of the $r$-th root stack along the divisor. We proved that relative invariants are equal to the $r^0$-coefficient of the corresponding orbifold Gromov-Witten invariants of $r$-th root stack for $r$ sufficiently large. Our result provides a precise relation between relative and orbifold invariants of target curves generalizing the result of Abramovich-Cadman-Wise to higher genus invariants of curves. Moreover, when $r$ is sufficiently large, we proved that relative stationary invariants of $X$ are equal to the orbifold stationary invariants in all genera. \nOur results lead to some interesting applications: a new proof of genus zero equality between relative and orbifold invariants of $X$ via localization; a new proof of the formula of Johnson-Pandharipande-Tseng for double Hurwitz numbers; a version of GW/H correspondence for stationary orbifold invariants.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":"56 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2018-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2020.24.2749","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Given a smooth target curve $X$, we explore the relationship between Gromov-Witten invariants of $X$ relative to a smooth divisor and orbifold Gromov-Witten invariants of the $r$-th root stack along the divisor. We proved that relative invariants are equal to the $r^0$-coefficient of the corresponding orbifold Gromov-Witten invariants of $r$-th root stack for $r$ sufficiently large. Our result provides a precise relation between relative and orbifold invariants of target curves generalizing the result of Abramovich-Cadman-Wise to higher genus invariants of curves. Moreover, when $r$ is sufficiently large, we proved that relative stationary invariants of $X$ are equal to the orbifold stationary invariants in all genera. Our results lead to some interesting applications: a new proof of genus zero equality between relative and orbifold invariants of $X$ via localization; a new proof of the formula of Johnson-Pandharipande-Tseng for double Hurwitz numbers; a version of GW/H correspondence for stationary orbifold invariants.
高属相对型和轨道型gromov - witten不变量
给定光滑目标曲线$X$,我们探讨了$X$相对于光滑除数的Gromov-Witten不变量与$r$-根堆栈沿除数的轨道Gromov-Witten不变量之间的关系。证明了当r足够大时,r$的相对不变量等于r$的相应轨道Gromov-Witten不变量的r^0系数。我们的结果提供了目标曲线的相对不变量和轨道不变量之间的精确关系,将Abramovich-Cadman-Wise的结果推广到曲线的高格不变量。此外,当$r$足够大时,我们证明了$X$的相对平稳不变量等于所有属的轨道平稳不变量。我们的结果带来了一些有趣的应用:通过局部化证明了$X$的相对不变量和折线不变量之间的属零等式;关于双Hurwitz数的Johnson-Pandharipande-Tseng公式的一个新证明静止轨道不变量的GW/H对应关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geometry & Topology
Geometry & Topology 数学-数学
自引率
5.00%
发文量
34
期刊介绍: Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers. The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信