FRACTURE RESISTANCE OF “TRANSITION” AREA IN THREE-LAYER STEEL/VANADIUM ALLOY/STEEL COMPOSITE AFTER THERMOMECHANICAL TREATMENT

Q3 Materials Science
T. A. Nechaikina, S. Nikulin, S. Rogachev, V. Turilina, A. Baranova
{"title":"FRACTURE RESISTANCE OF “TRANSITION” AREA IN THREE-LAYER STEEL/VANADIUM ALLOY/STEEL COMPOSITE AFTER THERMOMECHANICAL TREATMENT","authors":"T. A. Nechaikina, S. Nikulin, S. Rogachev, V. Turilina, A. Baranova","doi":"10.17073/0368-0797-2018-6-447-453","DOIUrl":null,"url":null,"abstract":"The creation of new structural materials for cladding tubes  of fast neutron reactors is an urgent task of modern nuclear power  engineering. A three-layer radiation-resistant and corrosion-resistant material based on vanadium alloy and stainless steel, intended  for work under extreme conditions (high temperatures, radiation  and aggressive environment) of operation of fast neutron reactor  cladding tubes has been developed in recent years. The most important aspect determining the operability of this material during  operation is the quality of the joining of different materials layers  among themselves, determined by the modes of thermomechanical treatment. The effect of the annealing on the chemical composition, structure, and fracture resistance of the “steel/vanadium  alloy” interface in the steel/vanadium alloy/steel three-layer tube,  obtained by hot co-extrusion of three-layer tube billet at 1100  °C  was studied. The 20Kh13 (AISI 420 type) steel for the outer layers and V – 4Ti – 4Cr vanadium alloy for the core were used as the  components of the tube. The structure and chemical composition  in the layer joining zone were studied using the optical microscopy and electron microscopy with X-ray microspectral analysis.  The fracture resistance of the “steel/vanadium alloy” interface was  evaluated by a compression test of a three-layer ring sample with  notch using an acoustic emission (AE) measurement. It is shown  that after co-extrusion a “transition” area of diffusion interaction  having a variable chemical composition with a width of 10–15 μm  is formed between vanadium alloy and steel, which represents the  continuous series of solid solutions, without precipitation of brittle  phases, providing a strong bonding between vanadium alloy and  steel in the three-layer material. No voids, delaminations or defects were detected at the “steel/vanadium alloy” interface. However, a  crack is formed in the steel layer during the compression tests of  the notched semi-ring three-layer samples after hot co-extrusion.  Annealing favorably influences the formation of the “transition”  area due to the increase in the width of the diffusion interaction  area. No cracks or delaminations at the boundary between steel and  vanadium layers were observed in the three-layer tube samples after annealing, and the three-layer material behaves like a monolith  material during testing.","PeriodicalId":35527,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17073/0368-0797-2018-6-447-453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 1

Abstract

The creation of new structural materials for cladding tubes  of fast neutron reactors is an urgent task of modern nuclear power  engineering. A three-layer radiation-resistant and corrosion-resistant material based on vanadium alloy and stainless steel, intended  for work under extreme conditions (high temperatures, radiation  and aggressive environment) of operation of fast neutron reactor  cladding tubes has been developed in recent years. The most important aspect determining the operability of this material during  operation is the quality of the joining of different materials layers  among themselves, determined by the modes of thermomechanical treatment. The effect of the annealing on the chemical composition, structure, and fracture resistance of the “steel/vanadium  alloy” interface in the steel/vanadium alloy/steel three-layer tube,  obtained by hot co-extrusion of three-layer tube billet at 1100  °C  was studied. The 20Kh13 (AISI 420 type) steel for the outer layers and V – 4Ti – 4Cr vanadium alloy for the core were used as the  components of the tube. The structure and chemical composition  in the layer joining zone were studied using the optical microscopy and electron microscopy with X-ray microspectral analysis.  The fracture resistance of the “steel/vanadium alloy” interface was  evaluated by a compression test of a three-layer ring sample with  notch using an acoustic emission (AE) measurement. It is shown  that after co-extrusion a “transition” area of diffusion interaction  having a variable chemical composition with a width of 10–15 μm  is formed between vanadium alloy and steel, which represents the  continuous series of solid solutions, without precipitation of brittle  phases, providing a strong bonding between vanadium alloy and  steel in the three-layer material. No voids, delaminations or defects were detected at the “steel/vanadium alloy” interface. However, a  crack is formed in the steel layer during the compression tests of  the notched semi-ring three-layer samples after hot co-extrusion.  Annealing favorably influences the formation of the “transition”  area due to the increase in the width of the diffusion interaction  area. No cracks or delaminations at the boundary between steel and  vanadium layers were observed in the three-layer tube samples after annealing, and the three-layer material behaves like a monolith  material during testing.
三层钢/钒合金/钢复合材料热处理后“过渡”区的抗断裂性能
研制新型快中子堆包壳管结构材料是现代核电工程的一项紧迫任务。近年来研制出了一种以钒合金和不锈钢为基础的三层抗辐射耐腐蚀材料,用于快中子堆包壳管在极端条件下(高温、辐射和侵蚀环境)的运行。在操作过程中,决定这种材料的可操作性的最重要的方面是不同材料层之间的连接质量,这取决于热机械处理的方式。以20Kh13 (AISI 420型)钢为外层材料,V - 4Ti - 4Cr钒合金为芯材,在1100℃高温共挤压三层管坯,研究了退火对钢/钒合金/钢三层管中“钢/钒合金”界面化学成分、组织和抗断裂性能的影响。利用光学显微镜和电子显微镜结合x射线显微光谱分析研究了层连接区的结构和化学成分。采用声发射(AE)测量方法对带缺口的三层环形试样进行压缩试验,评价了“钢/钒合金”界面的抗断裂性能。结果表明:共挤压后,钒合金与钢之间形成了一个宽度为10 ~ 15 μm、化学成分变化较大的扩散相互作用过渡区,为连续系列固溶体,未析出脆性相,使三层材料中钒合金与钢结合牢固,在“钢/钒合金”界面处未发现空洞、分层和缺陷。然而,缺口半环形三层试样在热共挤压后的压缩试验中,钢层出现裂纹。由于扩散相互作用区域宽度的增加,退火有利于“过渡”区域的形成。退火后的三层管样在钢和钒层交界处未观察到裂纹和分层现象,在测试过程中三层材料表现为整体材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya
Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya Materials Science-Materials Science (miscellaneous)
CiteScore
0.90
自引率
0.00%
发文量
81
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信