Data-driven Adaptive Iterative Learning Control Based on a Local Dynamic Linearization

Shuhua Zhang, Yu Hui, R. Chi
{"title":"Data-driven Adaptive Iterative Learning Control Based on a Local Dynamic Linearization","authors":"Shuhua Zhang, Yu Hui, R. Chi","doi":"10.1109/DDCLS.2018.8516008","DOIUrl":null,"url":null,"abstract":"Linearization technique is inevitable for a nonlinear control system design. However, the traditional linearization methods require model information, which is difficult to obtain for the complex nonlinear system. In this article, a new local dynamic linearization method is proposed via a mean-value theorem and can be estimated by using the I/O data only. Then a new adaptive iterative learning control is proposed by using the optimal technology. The simulation verifies the monotonic convergence and practicability of this method.","PeriodicalId":6565,"journal":{"name":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"24 1","pages":"184-188"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2018.8516008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Linearization technique is inevitable for a nonlinear control system design. However, the traditional linearization methods require model information, which is difficult to obtain for the complex nonlinear system. In this article, a new local dynamic linearization method is proposed via a mean-value theorem and can be estimated by using the I/O data only. Then a new adaptive iterative learning control is proposed by using the optimal technology. The simulation verifies the monotonic convergence and practicability of this method.
基于局部动态线性化的数据驱动自适应迭代学习控制
对于非线性控制系统的设计,线性化技术是不可避免的。然而,传统的线性化方法需要模型信息,对于复杂的非线性系统难以获得模型信息。本文利用中值定理提出了一种新的局部动态线性化方法,该方法可以仅使用I/O数据进行估计。然后利用最优技术提出了一种新的自适应迭代学习控制方法。仿真结果验证了该方法的单调收敛性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信