A typed pattern calculus

D. Kesner, Laurence Puel, V. Tannen
{"title":"A typed pattern calculus","authors":"D. Kesner, Laurence Puel, V. Tannen","doi":"10.1109/LICS.1993.287581","DOIUrl":null,"url":null,"abstract":"The theory of programming with pattern-matching function definitions has been studied mainly in the framework of first-order rewrite systems. The authors present a typed functional calculus that emphasizes the strong connection between the structure of whole pattern definitions and their types. In this calculus, type-checking guarantees the absence of runtime errors caused by nonexhaustive pattern-matching definitions. Its operational semantics is deterministic in a natural way, without the imposition of ad hoc solutions such as clause order or best fit. The calculus is designed as a computational interpretation of the Gentzen sequent proofs for the intuitionistic propositional logic. The basic properties connecting typing and evaluation, subject reduction, and strong normalization are proved. The authors believe that this calculus offers a rational reconstruction of the pattern-matching features found in successful functional languages.<<ETX>>","PeriodicalId":6322,"journal":{"name":"[1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science","volume":"26 1","pages":"262-274"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.1993.287581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

The theory of programming with pattern-matching function definitions has been studied mainly in the framework of first-order rewrite systems. The authors present a typed functional calculus that emphasizes the strong connection between the structure of whole pattern definitions and their types. In this calculus, type-checking guarantees the absence of runtime errors caused by nonexhaustive pattern-matching definitions. Its operational semantics is deterministic in a natural way, without the imposition of ad hoc solutions such as clause order or best fit. The calculus is designed as a computational interpretation of the Gentzen sequent proofs for the intuitionistic propositional logic. The basic properties connecting typing and evaluation, subject reduction, and strong normalization are proved. The authors believe that this calculus offers a rational reconstruction of the pattern-matching features found in successful functional languages.<>
类型化模式演算
本文主要在一阶重写系统的框架下研究了具有模式匹配函数定义的程序设计理论。作者提出了一种类型函数演算,强调整个模式定义的结构与其类型之间的紧密联系。在这种演算中,类型检查保证不存在由非穷尽模式匹配定义引起的运行时错误。它的操作语义以一种自然的方式是确定的,没有强加诸如子句顺序或最佳匹配之类的特殊解决方案。微积分被设计为直觉命题逻辑根岑序列证明的计算解释。证明了类型化与评价、主题约简和强归一化的基本性质。作者相信这种演算为成功的函数式语言中的模式匹配特性提供了一种合理的重构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信