Combined Production of Three Bioenergy Resources from Nannochloropsis sp. Microalgae

N. Adam, A. Shanableh
{"title":"Combined Production of Three Bioenergy Resources from Nannochloropsis sp. Microalgae","authors":"N. Adam, A. Shanableh","doi":"10.4172/2157-7463.1000347","DOIUrl":null,"url":null,"abstract":"In this study, three bioenergy resources namely lipid, sugars and biogas were produced using two treatment sequences to combine production of three bioenergy resources from microalgae Nannochloropsis sp.,. Sequance-1 started with hydrolysis hydrocarbons using cellulase enzyme obtained from Trichoderma viride fungi. Following hydrolysis, lipids were extracted and the spent algae was mixed with wastewater sludge and anaerobically digested to produce biogas. Sequence-2 started with lipids extraction, followed by hydrolysis then biogas production. In sequence-1, hydrolysis improved with increased enzyme dose and produced a maximum of approximately 103 mg/g total sugars and 88 mg/g reducing sugars. Lipids were then extracted, which resulted in approximately 0.48 g lipids/g algae. Biogas production increased as the quantity of spent algae added to sludge increased but enzymatic hydrolysis reduced the substrate value of spent algae. The maximum specific biogas (263 mL/g) was produced from the water-hydrolyzed algae and sludge mixtures, then from the enzyme-hydrolyzed algae and sludge mixtures (213 mL/g), then from sludge alone (106 mL/g). In sequence-2, lipids (0.48 g/g) were fully extracted then enzymatic hydrolysis of the residues produced a maximum of approximately 83 mg /g total sugars and 79 mg/g reducing sugars. The ultimate biogas produced from the spent algae and sludge mixtures reached 238 mL/g. The results confirmed the potential of combining production of three bioenergy resources from Nannochloropsis sp. The sugars can be used for bioethanol production, the lipids for biodiesel production and the biogas can be processed to benefit from its methane content. Furthermore, the results suggested that the production sequence influences the relative production of the three resources, with sequence-1 being the better option.","PeriodicalId":14041,"journal":{"name":"International journal of energy engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of energy engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2157-7463.1000347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this study, three bioenergy resources namely lipid, sugars and biogas were produced using two treatment sequences to combine production of three bioenergy resources from microalgae Nannochloropsis sp.,. Sequance-1 started with hydrolysis hydrocarbons using cellulase enzyme obtained from Trichoderma viride fungi. Following hydrolysis, lipids were extracted and the spent algae was mixed with wastewater sludge and anaerobically digested to produce biogas. Sequence-2 started with lipids extraction, followed by hydrolysis then biogas production. In sequence-1, hydrolysis improved with increased enzyme dose and produced a maximum of approximately 103 mg/g total sugars and 88 mg/g reducing sugars. Lipids were then extracted, which resulted in approximately 0.48 g lipids/g algae. Biogas production increased as the quantity of spent algae added to sludge increased but enzymatic hydrolysis reduced the substrate value of spent algae. The maximum specific biogas (263 mL/g) was produced from the water-hydrolyzed algae and sludge mixtures, then from the enzyme-hydrolyzed algae and sludge mixtures (213 mL/g), then from sludge alone (106 mL/g). In sequence-2, lipids (0.48 g/g) were fully extracted then enzymatic hydrolysis of the residues produced a maximum of approximately 83 mg /g total sugars and 79 mg/g reducing sugars. The ultimate biogas produced from the spent algae and sludge mixtures reached 238 mL/g. The results confirmed the potential of combining production of three bioenergy resources from Nannochloropsis sp. The sugars can be used for bioethanol production, the lipids for biodiesel production and the biogas can be processed to benefit from its methane content. Furthermore, the results suggested that the production sequence influences the relative production of the three resources, with sequence-1 being the better option.
纳米绿藻联合生产三种生物能源的研究
本研究采用两种处理顺序生产脂质、糖质和沼气三种生物能源,并结合纳米绿藻生产三种生物能源。序列1从使用从绿色木霉真菌中获得的纤维素酶水解碳氢化合物开始。水解后提取脂质,将废藻与废水污泥混合厌氧消化生成沼气。序列2从脂质提取开始,接着是水解,然后是沼气生产。在序列1中,酶解随着酶剂量的增加而改善,产生最大约103 mg/g总糖和88 mg/g还原糖。然后提取脂质,得到约0.48 g脂质/g藻类。随着污泥中废藻添加量的增加,沼气产量增加,但酶水解降低了废藻的底物值。水水解藻类和污泥混合物产生的比沼气最大(263 mL/g),其次是酶水解藻类和污泥混合物(213 mL/g),最后是污泥(106 mL/g)。在序列2中,脂质(0.48 g/g)被充分提取,然后酶解残基产生最大约83 mg/g总糖和79 mg/g还原糖。废藻与污泥混合产生的最终沼气达到238 mL/g。研究结果证实了三种生物能源组合生产的潜力,其中糖可用于生产生物乙醇,脂质可用于生产生物柴油,沼气可加工利用其甲烷含量。结果表明,三种资源的相对产量受生产顺序的影响,顺序1是较好的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信