Physicochemical Modifications and Decolorization of Textile Wastewater by Ozonation: Performance Evaluation of a Batch System

IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
E. Prado, F. Miranda, L. G. de Araujo, G. L. Fernandes, A. L. J. Pereira, M. C. Gomes, A. S. da Silva Sobrinho, M. Baldan, G. Petraconi
{"title":"Physicochemical Modifications and Decolorization of Textile Wastewater by Ozonation: Performance Evaluation of a Batch System","authors":"E. Prado, F. Miranda, L. G. de Araujo, G. L. Fernandes, A. L. J. Pereira, M. C. Gomes, A. S. da Silva Sobrinho, M. Baldan, G. Petraconi","doi":"10.1080/01919512.2022.2088470","DOIUrl":null,"url":null,"abstract":"ABSTRACT This is an experimental study on the decolorization efficiency and the degradation of organic compounds from textile wastewater by the ozonation process in a batch system. The effects of different sample volumes of textile wastewater over time were investigated. The experiments were performed in a 1 L glass reactor with a magnetic stirrer and a bubble diffuser at the bottom to feed the ozone. The applied cumulative ozone dosage varied at 120 gO3 L−1, 60 gO3 L−1, and 30 gO3 L−1, and the total interaction time for each test was 1 h. To investigate the physicochemical properties of the textile wastewater (solid and liquid phases) before and after the treatment, multiple analytical characterization methods were used: Thermal Gravimetric Analysis, Scanning Electron Microscopy coupled with Energy-Dispersive X-ray Spectroscopy, X-ray diffraction, Fourier Transform Infrared spectroscopy, and Spectrophotometer. The most perceptive change was observed in the color of the liquid medium, which turned from black to transparent, and a visual color number indicator known as DurchsichtFarbZahl (DFZ) was used for the evaluation of this process. Absorbance values decreased about 3.5 times after 5 min of treatment with a 0.15 L sample volume, and these values differed for tests with larger sample volumes. FTIR spectroscopy demonstrated that the bands’ intensities associated with the C − H, C − N, and C − O decrease during treatment. On the other hand, it was possible to conclude that combining treatment methods to improve the degradation of persistent compounds after the ozonation process is necessary. Finally, the ozonation of the textile wastewater proved to be effective at removing color due to its high reaction capacity. Graphical Abstract","PeriodicalId":19580,"journal":{"name":"Ozone: Science & Engineering","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ozone: Science & Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/01919512.2022.2088470","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT This is an experimental study on the decolorization efficiency and the degradation of organic compounds from textile wastewater by the ozonation process in a batch system. The effects of different sample volumes of textile wastewater over time were investigated. The experiments were performed in a 1 L glass reactor with a magnetic stirrer and a bubble diffuser at the bottom to feed the ozone. The applied cumulative ozone dosage varied at 120 gO3 L−1, 60 gO3 L−1, and 30 gO3 L−1, and the total interaction time for each test was 1 h. To investigate the physicochemical properties of the textile wastewater (solid and liquid phases) before and after the treatment, multiple analytical characterization methods were used: Thermal Gravimetric Analysis, Scanning Electron Microscopy coupled with Energy-Dispersive X-ray Spectroscopy, X-ray diffraction, Fourier Transform Infrared spectroscopy, and Spectrophotometer. The most perceptive change was observed in the color of the liquid medium, which turned from black to transparent, and a visual color number indicator known as DurchsichtFarbZahl (DFZ) was used for the evaluation of this process. Absorbance values decreased about 3.5 times after 5 min of treatment with a 0.15 L sample volume, and these values differed for tests with larger sample volumes. FTIR spectroscopy demonstrated that the bands’ intensities associated with the C − H, C − N, and C − O decrease during treatment. On the other hand, it was possible to conclude that combining treatment methods to improve the degradation of persistent compounds after the ozonation process is necessary. Finally, the ozonation of the textile wastewater proved to be effective at removing color due to its high reaction capacity. Graphical Abstract
臭氧氧化对纺织废水的理化改性及脱色:间歇系统的性能评价
摘要:本文对间歇式臭氧氧化工艺对纺织废水中有机物的脱色效果及降解进行了实验研究。考察了不同样品体积对纺织废水的影响。实验在1l玻璃反应器中进行,反应器底部有磁力搅拌器和气泡扩散器供氧。应用累积臭氧剂量分别为120、60和30 gO3 L−1,每次试验的总交互作用时间为1 h。为了研究处理前后纺织废水(固、液相)的理化性质,采用了多种分析表征方法:热重分析,扫描电子显微镜结合能量色散x射线光谱学,x射线衍射,傅里叶变换红外光谱学和分光光度计。观察到的最明显的变化是液体介质的颜色,从黑色变为透明,并使用称为DurchsichtFarbZahl (DFZ)的视觉色数指示器来评价这一过程。当样品体积为0.15 L时,吸光度值在处理5分钟后下降约3.5倍,当样品体积较大时,吸光度值有所不同。FTIR光谱分析表明,在处理过程中,与C−H、C−N和C−O相关的波段强度降低。另一方面,可以得出结论,结合处理方法来改善臭氧化过程后持久性化合物的降解是必要的。实验结果表明,臭氧氧化法处理纺织废水具有较高的去色能力。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ozone: Science & Engineering
Ozone: Science & Engineering 环境科学-工程:环境
CiteScore
5.90
自引率
11.10%
发文量
40
审稿时长
2 months
期刊介绍: The only journal in the world that focuses on the technologies of ozone and related oxidation technologies, Ozone: Science and Engineering brings you quality original research, review papers, research notes, and case histories in each issue. Get the most up-to date results of basic, applied, and engineered research including: -Ozone generation and contacting- Treatment of drinking water- Analysis of ozone in gases and liquids- Treatment of wastewater and hazardous waste- Advanced oxidation processes- Treatment of emerging contaminants- Agri-Food applications- Process control of ozone systems- New applications for ozone (e.g. laundry applications, semiconductor applications)- Chemical synthesis. All submitted manuscripts are subject to initial appraisal by the Editor, and, if found suitable for further consideration, to peer review by independent, anonymous expert referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信