Characterization of 3D Printed Highly Filled Composite: Structure, Thermal Diffusivity and Dynamic-mechanical Analysis

Q3 Chemical Engineering
A. Patti, G. Cicala, C. Tosto, L. Saitta, D. Acierno
{"title":"Characterization of 3D Printed Highly Filled Composite: Structure, Thermal Diffusivity and Dynamic-mechanical Analysis","authors":"A. Patti, G. Cicala, C. Tosto, L. Saitta, D. Acierno","doi":"10.3303/CET2186257","DOIUrl":null,"url":null,"abstract":"This study focuses on the characterization of 3D printed parts by fused deposition modelling (FDM) technique made from a composite filament, highly loaded of stainless-steel microparticles, prepared at different infill density (0, 50, 100%). Thermo-mechanical properties, morphological aspects and heat transport behaviour of the developed specimens have been investigated by dynamic-mechanical analysis (DMA), thermal diffusivity measurements and scanning electron microscopy (SEM). Experimental results allowed to attest a drastic reduction of storage modulus in the range of testing temperatures by reducing the infill density. In the meantime, an increment of dissipation factor was shown in lesser stiff samples at temperatures near to the ambient. The same increasing trend did not appear in the case of thermal diffusion that showed closer values for samples at 0 and 50% of infill, and an augment in the case of infilling level of 100%. This outcome, explained through SEM pictures, was attributed to the difficulty in realization of perfect empty internal structures within 3D parts. A supporting analysis by IR spectroscopy was conducted on the composite surface to gain qualitative information about constituting polymer filament. Further considerations on the porosity of systems have been obtained elaborating SEM micrographs with ImageJ software.","PeriodicalId":9695,"journal":{"name":"Chemical engineering transactions","volume":"51 1","pages":"1537-1542"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical engineering transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3303/CET2186257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 8

Abstract

This study focuses on the characterization of 3D printed parts by fused deposition modelling (FDM) technique made from a composite filament, highly loaded of stainless-steel microparticles, prepared at different infill density (0, 50, 100%). Thermo-mechanical properties, morphological aspects and heat transport behaviour of the developed specimens have been investigated by dynamic-mechanical analysis (DMA), thermal diffusivity measurements and scanning electron microscopy (SEM). Experimental results allowed to attest a drastic reduction of storage modulus in the range of testing temperatures by reducing the infill density. In the meantime, an increment of dissipation factor was shown in lesser stiff samples at temperatures near to the ambient. The same increasing trend did not appear in the case of thermal diffusion that showed closer values for samples at 0 and 50% of infill, and an augment in the case of infilling level of 100%. This outcome, explained through SEM pictures, was attributed to the difficulty in realization of perfect empty internal structures within 3D parts. A supporting analysis by IR spectroscopy was conducted on the composite surface to gain qualitative information about constituting polymer filament. Further considerations on the porosity of systems have been obtained elaborating SEM micrographs with ImageJ software.
3D打印高填充复合材料的表征:结构、热扩散系数和动态力学分析
本研究的重点是通过熔融沉积建模(FDM)技术对3D打印部件进行表征,该技术由复合长丝制成,高负荷不锈钢微粒,以不同的填充密度(0,50%,100%)制备。通过动态力学分析(DMA)、热扩散率测量和扫描电子显微镜(SEM)研究了开发样品的热力学性能、形态方面和热传递行为。实验结果证明,通过降低填充密度,在测试温度范围内存储模量急剧降低。与此同时,在接近环境温度下,较低硬度样品的耗散系数有所增加。同样的增加趋势没有出现在热扩散的情况下,在0和50%的填充水平下显示出更接近的值,在100%的填充水平下增加。通过扫描电镜图片解释了这一结果,原因是很难在3D零件中实现完美的空内部结构。利用红外光谱对复合材料表面进行了辅助分析,获得了聚合物长丝构成的定性信息。用ImageJ软件对SEM显微图进行了进一步的分析,得到了系统孔隙度的进一步考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical engineering transactions
Chemical engineering transactions Chemical Engineering-Chemical Engineering (all)
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
6 weeks
期刊介绍: Chemical Engineering Transactions (CET) aims to be a leading international journal for publication of original research and review articles in chemical, process, and environmental engineering. CET begin in 2002 as a vehicle for publication of high-quality papers in chemical engineering, connected with leading international conferences. In 2014, CET opened a new era as an internationally-recognised journal. Articles containing original research results, covering any aspect from molecular phenomena through to industrial case studies and design, with a strong influence of chemical engineering methodologies and ethos are particularly welcome. We encourage state-of-the-art contributions relating to the future of industrial processing, sustainable design, as well as transdisciplinary research that goes beyond the conventional bounds of chemical engineering. Short reviews on hot topics, emerging technologies, and other areas of high interest should highlight unsolved challenges and provide clear directions for future research. The journal publishes periodically with approximately 6 volumes per year. Core topic areas: -Batch processing- Biotechnology- Circular economy and integration- Environmental engineering- Fluid flow and fluid mechanics- Green materials and processing- Heat and mass transfer- Innovation engineering- Life cycle analysis and optimisation- Modelling and simulation- Operations and supply chain management- Particle technology- Process dynamics, flexibility, and control- Process integration and design- Process intensification and optimisation- Process safety- Product development- Reaction engineering- Renewable energy- Separation processes- Smart industry, city, and agriculture- Sustainability- Systems engineering- Thermodynamic- Waste minimisation, processing and management- Water and wastewater engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信