Terahertz Reflectometry Imaging of Carbon Nanomaterials for Biological Application

William Ghann, Hyeonggon Kang, Aunik K. Rahman, A. Rahman, Meser M. Ali, J. Uddin
{"title":"Terahertz Reflectometry Imaging of Carbon Nanomaterials for Biological Application","authors":"William Ghann, Hyeonggon Kang, Aunik K. Rahman, A. Rahman, Meser M. Ali, J. Uddin","doi":"10.35248/2157-7439.19.10.535","DOIUrl":null,"url":null,"abstract":"The multiwalled carbon nanotubes has a myriad of applications due to its unique electrical and mechanical properties. The biomedical application of multiwalled carbon nanotubes that have been reported include drug delivery, medical imaging, gene delivery, tissue regeneration, and diagnostics. Proper characterization is required to enhance the potential application of the multiwalled carbon nanotubes. Terahertz technology is a relatively unfamiliar spectrometric technique that show promise in efficiently characterizing multiwalled carbon nanotubes. In this paper, terahertz imaging was used to characterize multiwalled carbon nanotube in comparison with other characterization techniques, including transmission electron microscopy and field emission scanning electron microscopy. The average diameter of the carbon nanotubes from the reconstructed terahertz images was 48.54 nm, while the average length of a fiber was found to be approximately 1.2 μm. The multiwalled carbon nanotubes were additionally characterized by FTIR, Raman spectroscopy, and Energy-dispersive X-ray spectroscopy.","PeriodicalId":16532,"journal":{"name":"Journal of Nanomedicine & Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanomedicine & Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35248/2157-7439.19.10.535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The multiwalled carbon nanotubes has a myriad of applications due to its unique electrical and mechanical properties. The biomedical application of multiwalled carbon nanotubes that have been reported include drug delivery, medical imaging, gene delivery, tissue regeneration, and diagnostics. Proper characterization is required to enhance the potential application of the multiwalled carbon nanotubes. Terahertz technology is a relatively unfamiliar spectrometric technique that show promise in efficiently characterizing multiwalled carbon nanotubes. In this paper, terahertz imaging was used to characterize multiwalled carbon nanotube in comparison with other characterization techniques, including transmission electron microscopy and field emission scanning electron microscopy. The average diameter of the carbon nanotubes from the reconstructed terahertz images was 48.54 nm, while the average length of a fiber was found to be approximately 1.2 μm. The multiwalled carbon nanotubes were additionally characterized by FTIR, Raman spectroscopy, and Energy-dispersive X-ray spectroscopy.
生物应用碳纳米材料的太赫兹反射成像
多壁碳纳米管由于其独特的电学和机械性能而具有无数的应用。已报道的多壁碳纳米管的生物医学应用包括药物输送、医学成像、基因输送、组织再生和诊断。为了提高多壁碳纳米管的潜在应用,需要对其进行适当的表征。太赫兹技术是一种相对陌生的光谱技术,在有效表征多壁碳纳米管方面显示出前景。在本文中,太赫兹成像用于表征多壁碳纳米管,并与其他表征技术,包括透射电子显微镜和场发射扫描电子显微镜进行了比较。重建的太赫兹图像显示碳纳米管的平均直径为48.54 nm,而光纤的平均长度约为1.2 μm。采用红外光谱、拉曼光谱和能量色散x射线光谱对多壁碳纳米管进行了表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信