Improvement of CSS Method for Extra-Heavy Oil Recovery in Shallow Reservoirs by Simultaneous Injection of in-Situ Upgrading Catalysts and Solvent: Laboratory Study, Simulation and Field Application

A. Vakhin, S. Sitnov, I. Mukhamatdinov, M. Varfolomeev, Allan Rojas, Raushan M. Sabiryanov, A. Al-Muntaser, V. Sudakov, D. Nurgaliev, I. Minkhanov, M. Amerkhanov, R. Akhmadullin
{"title":"Improvement of CSS Method for Extra-Heavy Oil Recovery in Shallow Reservoirs by Simultaneous Injection of in-Situ Upgrading Catalysts and Solvent: Laboratory Study, Simulation and Field Application","authors":"A. Vakhin, S. Sitnov, I. Mukhamatdinov, M. Varfolomeev, Allan Rojas, Raushan M. Sabiryanov, A. Al-Muntaser, V. Sudakov, D. Nurgaliev, I. Minkhanov, M. Amerkhanov, R. Akhmadullin","doi":"10.2118/200082-ms","DOIUrl":null,"url":null,"abstract":"\n In this work method to improve the efficiency of the development of shallow deposits of extra-heavy oil using cyclic team stimulation (CSS) technology together with injection of catalyst for in-situ upgrading and solvent was proposed. Oil-soluble catalyst has been developed. Efficiency of catalyst was proved in laboratory. Volume and conditions of catalyst and solvent injection together with steam were determined based on simulation results. Pilot tests of technology were carried out on extra-heavy oilfield in Tatarstan, Russia.\n The screening of catalysts and solvents together with injection of steam was studied in high pressure reactors under reservoir conditions. Heavy oil displacement coefficients in basic scenario of steam injection and second scenario of steam injection together with catalyst and solvent were measured on self-designed experimental steam injection apparatus.\n The technology was simulated with tNavigator softwarre (Rock Fluid Dynamics) version 18.2, STARS. Pilot tests were carried out in several stages: preliminary short-term injection of steam to pre-heat the reservoir, injection of catalyst solution and solvent, the subsequent full-scale stage of steam injection, imbibition, and production. The results of field tests confirmed laboratory and simulation data. According to the analyzed samples after six months of field tests, the viscosity at the first stage decreases as a result of dilution with a solvent. The effect of the catalyst, which particles are adsorbed on the reservoir rocks, clearly demonstrated later.\n It is shown that the combined use of in-situ upgrading catalyst and a solvent in CSS method allows to increase oil recovery factor. At the same time, the produced oil has better properties. Significant degree of conversion of resins and asphaltenes to light fractions was established. Field tests on Ashal'cha oilfield have shown that this technology is effective for the development of shallow deposits of extra-heavy oil.","PeriodicalId":11113,"journal":{"name":"Day 1 Mon, March 21, 2022","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, March 21, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/200082-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work method to improve the efficiency of the development of shallow deposits of extra-heavy oil using cyclic team stimulation (CSS) technology together with injection of catalyst for in-situ upgrading and solvent was proposed. Oil-soluble catalyst has been developed. Efficiency of catalyst was proved in laboratory. Volume and conditions of catalyst and solvent injection together with steam were determined based on simulation results. Pilot tests of technology were carried out on extra-heavy oilfield in Tatarstan, Russia. The screening of catalysts and solvents together with injection of steam was studied in high pressure reactors under reservoir conditions. Heavy oil displacement coefficients in basic scenario of steam injection and second scenario of steam injection together with catalyst and solvent were measured on self-designed experimental steam injection apparatus. The technology was simulated with tNavigator softwarre (Rock Fluid Dynamics) version 18.2, STARS. Pilot tests were carried out in several stages: preliminary short-term injection of steam to pre-heat the reservoir, injection of catalyst solution and solvent, the subsequent full-scale stage of steam injection, imbibition, and production. The results of field tests confirmed laboratory and simulation data. According to the analyzed samples after six months of field tests, the viscosity at the first stage decreases as a result of dilution with a solvent. The effect of the catalyst, which particles are adsorbed on the reservoir rocks, clearly demonstrated later. It is shown that the combined use of in-situ upgrading catalyst and a solvent in CSS method allows to increase oil recovery factor. At the same time, the produced oil has better properties. Significant degree of conversion of resins and asphaltenes to light fractions was established. Field tests on Ashal'cha oilfield have shown that this technology is effective for the development of shallow deposits of extra-heavy oil.
同时注入原位提质催化剂和溶剂的CSS方法在浅层超稠油开采中的改进:实验室研究、模拟与现场应用
提出了采用循环组队增产(CSS)技术提高浅层特稠油开发效率,同时注入原位改造催化剂和溶剂的工作方法。开发了油溶性催化剂。实验证明了催化剂的有效性。根据模拟结果确定了催化剂、溶剂及蒸汽喷注的体积和条件。在俄罗斯鞑靼斯坦特稠油油田进行了技术先导试验。在高压反应器中研究了储层条件下催化剂和溶剂的筛选及蒸汽注入。在自行设计的注汽实验装置上,测量了注汽基本工况和注汽第二工况下的稠油驱替系数。采用tNavigator软件(岩石流体动力学)18.2版STARS对该技术进行了模拟。试验分几个阶段进行:初步短期注入蒸汽对储层进行预热,注入催化剂溶液和溶剂,随后进行全面的蒸汽注入、自吸和生产阶段。现场试验结果证实了实验室和模拟数据。根据经过6个月现场测试的分析样品,由于溶剂稀释,第一阶段的粘度降低。催化剂的作用,即颗粒被吸附在储层岩石上,后来得到了清楚的证明。结果表明,原位升级催化剂和溶剂在CSS法中联合使用可提高采收率。同时,采出的油具有较好的性能。确定了树脂和沥青质的显著转化率。在阿沙尔查油田的现场试验表明,该技术对开发浅层超稠油是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信