{"title":"Pseudo-random number generator based on linear congruence and delayed Fibonacci method","authors":"Radoslaw Cybulski","doi":"10.31648/ts.7238","DOIUrl":null,"url":null,"abstract":"Pseudo-random number generation techniques are an essential tool to correctly test machine learning processes. The methodologies are many, but also the possibilities to combine them in a new way are plenty. Thus, there is a chance to create mechanisms potentially useful in new and better generators. In this paper, we present a new pseudo-random number generator based on a hybrid of two existing generators - a linear congruential method and a delayed Fibonacci technique. We demonstrate the implementation of the generator by checking its correctness and properties using chi-square, Kolmogorov and TestU01.1.2.3 tests and we apply the Monte Carlo Cross Validation method in classification context to test the performance of the generator in practice.","PeriodicalId":41669,"journal":{"name":"Archives for Technical Sciences","volume":"18 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives for Technical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31648/ts.7238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 4
Abstract
Pseudo-random number generation techniques are an essential tool to correctly test machine learning processes. The methodologies are many, but also the possibilities to combine them in a new way are plenty. Thus, there is a chance to create mechanisms potentially useful in new and better generators. In this paper, we present a new pseudo-random number generator based on a hybrid of two existing generators - a linear congruential method and a delayed Fibonacci technique. We demonstrate the implementation of the generator by checking its correctness and properties using chi-square, Kolmogorov and TestU01.1.2.3 tests and we apply the Monte Carlo Cross Validation method in classification context to test the performance of the generator in practice.