Low-cost Beamforming-based DOA Estimation with Model Order Determination

E. Aboutanios, A. Hassanien
{"title":"Low-cost Beamforming-based DOA Estimation with Model Order Determination","authors":"E. Aboutanios, A. Hassanien","doi":"10.1109/SAM48682.2020.9104347","DOIUrl":null,"url":null,"abstract":"Direction of Arrival (DOA) estimation algorithms generally assume knowledge of the number of sources. This crucial parameter is either determined by the problem or estimated from the available observations prior to the application of the DOA estimators. Model order estimation (MOE) strategies via information theoretic criteria such as the Akaike Information Criterion (AIC), Minimum Description Length (MDL), and Hannan-Quinn Criterion (HQC), are usually implemented using the singular value decomposition (SVD) which is computationally expensive. In this work, we incorporate the information theoretic criteria directly into the recently proposed Fast Iterative Interpolation Beamformer (FIIB), thus avoiding the SVD. We derive the expressions for the likelihood function as well as the penalty parameters of the three criteria in terms of the number of sources. The resulting FIIB with MOE algorithm is then able to at once determine the number of sources and estimate their parameters. Simulation results demonstrate that the FIIB-based MOE outperforms the SVD-based MOE. Furthermore the FIIB with MDL achieves a performance that is very close to the original FIIB algorithm.","PeriodicalId":6753,"journal":{"name":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"97 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM48682.2020.9104347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Direction of Arrival (DOA) estimation algorithms generally assume knowledge of the number of sources. This crucial parameter is either determined by the problem or estimated from the available observations prior to the application of the DOA estimators. Model order estimation (MOE) strategies via information theoretic criteria such as the Akaike Information Criterion (AIC), Minimum Description Length (MDL), and Hannan-Quinn Criterion (HQC), are usually implemented using the singular value decomposition (SVD) which is computationally expensive. In this work, we incorporate the information theoretic criteria directly into the recently proposed Fast Iterative Interpolation Beamformer (FIIB), thus avoiding the SVD. We derive the expressions for the likelihood function as well as the penalty parameters of the three criteria in terms of the number of sources. The resulting FIIB with MOE algorithm is then able to at once determine the number of sources and estimate their parameters. Simulation results demonstrate that the FIIB-based MOE outperforms the SVD-based MOE. Furthermore the FIIB with MDL achieves a performance that is very close to the original FIIB algorithm.
基于模型阶数确定的低成本波束形成DOA估计
到达方向(DOA)估计算法通常假设知道源的数量。这个关键参数要么由问题决定,要么在应用DOA估计器之前根据可用的观测值估计。基于Akaike信息准则(AIC)、最小描述长度(MDL)和Hannan-Quinn准则(HQC)等信息论准则的模型阶数估计(MOE)策略通常采用计算量大的奇异值分解(SVD)来实现。在这项工作中,我们将信息理论标准直接纳入最近提出的快速迭代插值波束形成器(FIIB),从而避免了奇异值分解。我们根据源的数量推导出了三种准则的似然函数和惩罚参数的表达式。然后,使用MOE算法得到的FIIB能够立即确定源的数量并估计其参数。仿真结果表明,基于fiib的MOE优于基于svd的MOE。此外,使用MDL的FIIB实现了与原始FIIB算法非常接近的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信