Automation in the Field: SurveyLink

IF 0.5 0 ARCHITECTURE
J. Coleman, Nathan Barnes, Tim Wilson
{"title":"Automation in the Field: SurveyLink","authors":"J. Coleman, Nathan Barnes, Tim Wilson","doi":"10.1080/24751448.2022.2116230","DOIUrl":null,"url":null,"abstract":"Improvements in design and engineering software expand architectural possibilities, leading to increased complexity. Meanwhile, tools for physically constructing and delivering projects change slowly, outpaced by those developed by and for the design community. The result is an untenable pairing of innovative designs and conventional project delivery. We need new tools to execute ambitious and novel strategies to support project delivery successfully. Construction-centric tools offer an opportunity for increased participation in computational problem-solving and expand the diversity of expertise underlying AEC software. During the physical construction of any project, fabricated parts arrive on-site, where coordination problems surface, testing project assumptions where issues of fitment and trade (mis)coordination become apparent. At the construction site, costs are highest, while the work carries the most risk. This quantifiably riskiest time for any project is also when tradespeople have the least access to computational tools (Figure 1). Field personnel are under extreme pressure to make daily progress because of fieldwork’s high cost/risk. Collecting measurement data and making informed decisions quickly is transformative. In response, Zahner R&D, supported by Local 2 Field Superintendent expertise, built a software tool called SurveyLink, linking real-time survey data on-site to a collaborative 3D model, extending computational problem-solving to the field. Automation in the Field: SurveyLink","PeriodicalId":36812,"journal":{"name":"Technology Architecture and Design","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology Architecture and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24751448.2022.2116230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Improvements in design and engineering software expand architectural possibilities, leading to increased complexity. Meanwhile, tools for physically constructing and delivering projects change slowly, outpaced by those developed by and for the design community. The result is an untenable pairing of innovative designs and conventional project delivery. We need new tools to execute ambitious and novel strategies to support project delivery successfully. Construction-centric tools offer an opportunity for increased participation in computational problem-solving and expand the diversity of expertise underlying AEC software. During the physical construction of any project, fabricated parts arrive on-site, where coordination problems surface, testing project assumptions where issues of fitment and trade (mis)coordination become apparent. At the construction site, costs are highest, while the work carries the most risk. This quantifiably riskiest time for any project is also when tradespeople have the least access to computational tools (Figure 1). Field personnel are under extreme pressure to make daily progress because of fieldwork’s high cost/risk. Collecting measurement data and making informed decisions quickly is transformative. In response, Zahner R&D, supported by Local 2 Field Superintendent expertise, built a software tool called SurveyLink, linking real-time survey data on-site to a collaborative 3D model, extending computational problem-solving to the field. Automation in the Field: SurveyLink
现场自动化:SurveyLink
设计和工程软件的改进扩展了架构的可能性,从而增加了复杂性。与此同时,用于实际构建和交付项目的工具变化缓慢,被设计社区开发和为设计社区开发的工具超越。其结果是,创新设计和传统项目交付的结合是站不住脚的。我们需要新的工具来执行雄心勃勃的和新颖的战略,以支持项目的成功交付。以构建为中心的工具提供了更多参与计算问题解决的机会,并扩展了AEC软件底层专业知识的多样性。在任何项目的实际建设过程中,制造的部件到达现场,在那里协调问题浮出水面,测试项目假设,其中安装和贸易(错误)协调问题变得明显。在建筑工地,成本是最高的,同时工作的风险也是最大的。对于任何项目来说,这段可量化的风险最高的时间也是交易员使用计算工具最少的时间(图1)。由于现场工作的高成本/高风险,现场人员每天都面临着巨大的压力。收集测量数据并快速做出明智的决策是一种变革。为此,Zahner研发公司在Local 2 Field Superintendent专业知识的支持下,开发了一款名为SurveyLink的软件工具,将现场实时调查数据与协作3D模型连接起来,将计算问题解决扩展到现场。现场自动化:SurveyLink
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Technology Architecture and Design
Technology Architecture and Design Arts and Humanities-Visual Arts and Performing Arts
CiteScore
1.30
自引率
0.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信