3D to 2D surface mesh parameterization for unstructured transmission line method simulations

H. Nasser, S. Greedy, T. Benson, A. Vukovic, P. Sewell
{"title":"3D to 2D surface mesh parameterization for unstructured transmission line method simulations","authors":"H. Nasser, S. Greedy, T. Benson, A. Vukovic, P. Sewell","doi":"10.1109/COMPEM.2015.7052654","DOIUrl":null,"url":null,"abstract":"Advances in small scale fabrication processes have led to the advent of very thin flexible devices such as flexible RFID tags and smart clothing. In a geometrical sense, these present themselves as curved 2D open surfaces embedded in a 3D domain. When simulating EM behavior on these surfaces at low frequencies, a full 3D field model can become computationally expensive in terms of memory and run times. The objective of this paper is to present a method for applying a 2D unstructured Transmission Line Method (TLM) simulation to open, curved surfaces embedded in a 3D domain, by providing a one-to-one mapping of the geometry to a 2D flat plane The simulation results are then mapped back to the original 3D geometry, negating the need for a full 3D simulation. Further, we demonstrate that if the surface material parameters are altered in the vicinity of high curvature, the proposed method is still effective.","PeriodicalId":6530,"journal":{"name":"2015 IEEE International Conference on Computational Electromagnetics","volume":"45 1","pages":"338-340"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computational Electromagnetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPEM.2015.7052654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Advances in small scale fabrication processes have led to the advent of very thin flexible devices such as flexible RFID tags and smart clothing. In a geometrical sense, these present themselves as curved 2D open surfaces embedded in a 3D domain. When simulating EM behavior on these surfaces at low frequencies, a full 3D field model can become computationally expensive in terms of memory and run times. The objective of this paper is to present a method for applying a 2D unstructured Transmission Line Method (TLM) simulation to open, curved surfaces embedded in a 3D domain, by providing a one-to-one mapping of the geometry to a 2D flat plane The simulation results are then mapped back to the original 3D geometry, negating the need for a full 3D simulation. Further, we demonstrate that if the surface material parameters are altered in the vicinity of high curvature, the proposed method is still effective.
三维到二维表面网格参数化的非结构化输电线方法仿真
小规模制造工艺的进步导致了非常薄的柔性设备的出现,如柔性RFID标签和智能服装。在几何意义上,它们以嵌入在3D域中的弯曲的2D开放表面呈现。在低频率下模拟这些表面上的电磁行为时,一个完整的3D场模型在内存和运行时间方面可能会变得计算昂贵。本文的目的是提出一种方法,通过提供几何图形到二维平面的一对一映射,将二维非结构化传输线方法(TLM)仿真应用于嵌入在3D域中的开放曲面,然后将仿真结果映射回原始3D几何图形,从而消除了对完整3D仿真的需要。此外,我们证明了如果表面材料参数在高曲率附近发生变化,所提出的方法仍然有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信