Detecting keywords in Persian conversational telephony speech using a discriminative English keyword spotter

A. Shokri, Mohammad Hossein Davarpour, A. Akbari, B. Nasersharif
{"title":"Detecting keywords in Persian conversational telephony speech using a discriminative English keyword spotter","authors":"A. Shokri, Mohammad Hossein Davarpour, A. Akbari, B. Nasersharif","doi":"10.1109/ISSPIT.2013.6781892","DOIUrl":null,"url":null,"abstract":"In this paper, we present the results of evaluating the robustness to language change of a previously proposed keyword spotting system. We assessed the robustness of this system when trained on clean English dataset and tested on telephony Persian speech. To have better recognition rate on telephony data, we used Cepstral mean and variance normalization (CMVN) and Cepstral gain normalization (CGN) methods for normalizing features along with RASTA and auto regressive moving average (ARMA) filters. The keyword spotting results on Persian telephony dataset are reported and a maximum detection of 0.6 AUC (area under ROC curve) is obtained when using CMVN or CGN normalization of features, followed by ARMA filter. The evaluated keyword spotting method was shown to be robust to noise in a previous paper, and as the result of this study clarifies, it is considerably robust to language change too. This study reveals the potential of the evaluated method to be the foundation of a keyword spotter which can support a wide range of languages.","PeriodicalId":88960,"journal":{"name":"Proceedings of the ... IEEE International Symposium on Signal Processing and Information Technology. IEEE International Symposium on Signal Processing and Information Technology","volume":"9 1","pages":"000272-000276"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE International Symposium on Signal Processing and Information Technology. IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2013.6781892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we present the results of evaluating the robustness to language change of a previously proposed keyword spotting system. We assessed the robustness of this system when trained on clean English dataset and tested on telephony Persian speech. To have better recognition rate on telephony data, we used Cepstral mean and variance normalization (CMVN) and Cepstral gain normalization (CGN) methods for normalizing features along with RASTA and auto regressive moving average (ARMA) filters. The keyword spotting results on Persian telephony dataset are reported and a maximum detection of 0.6 AUC (area under ROC curve) is obtained when using CMVN or CGN normalization of features, followed by ARMA filter. The evaluated keyword spotting method was shown to be robust to noise in a previous paper, and as the result of this study clarifies, it is considerably robust to language change too. This study reveals the potential of the evaluated method to be the foundation of a keyword spotter which can support a wide range of languages.
波斯语会话电话语音中的关键字检测方法
在本文中,我们给出了评估先前提出的关键字识别系统对语言变化的鲁棒性的结果。我们在干净的英语数据集上进行训练,并在电话波斯语语音上进行测试,评估了该系统的鲁棒性。为了提高电话数据的识别率,我们使用了倒谱均值和方差归一化(CMVN)和倒谱增益归一化(CGN)方法以及RASTA和自回归移动平均(ARMA)滤波器对特征进行归一化。本文报告了波斯语电话数据集的关键字识别结果,当使用CMVN或CGN对特征进行归一化,然后使用ARMA滤波器时,获得了0.6 AUC (ROC曲线下面积)的最大检测。在之前的一篇论文中,评估的关键词定位方法对噪声具有鲁棒性,并且本研究的结果表明,它对语言变化也具有相当的鲁棒性。本研究揭示了评估方法的潜力,为关键字侦测器的基础,可以支持广泛的语言。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信