Text Retrieval Priors for Bayesian Logistic Regression

Eugene Yang, D. Lewis, O. Frieder
{"title":"Text Retrieval Priors for Bayesian Logistic Regression","authors":"Eugene Yang, D. Lewis, O. Frieder","doi":"10.1145/3331184.3331299","DOIUrl":null,"url":null,"abstract":"Discriminative learning algorithms such as logistic regression excel when training data are plentiful, but falter when it is meager. An extreme case is text retrieval (zero training data), where discriminative learning is impossible and heuristics such as BM25, which combine domain knowledge (a topical keyword query) with generative learning (Naive Bayes), are dominant. Building on past work, we show that BM25-inspired Gaussian priors for Bayesian logistic regression based on topical keywords provide better effectiveness than the usual L2 (zero mode, uniform variance) Gaussian prior. On two high recall retrieval datasets, the resulting models transition smoothly from BM25 level effectiveness to discriminative effectiveness as training data volume increases, dominating L2 regularization even when substantial training data is available.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331184.3331299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Discriminative learning algorithms such as logistic regression excel when training data are plentiful, but falter when it is meager. An extreme case is text retrieval (zero training data), where discriminative learning is impossible and heuristics such as BM25, which combine domain knowledge (a topical keyword query) with generative learning (Naive Bayes), are dominant. Building on past work, we show that BM25-inspired Gaussian priors for Bayesian logistic regression based on topical keywords provide better effectiveness than the usual L2 (zero mode, uniform variance) Gaussian prior. On two high recall retrieval datasets, the resulting models transition smoothly from BM25 level effectiveness to discriminative effectiveness as training data volume increases, dominating L2 regularization even when substantial training data is available.
基于贝叶斯逻辑回归的文本检索先验
判别学习算法,如逻辑回归,在训练数据丰富的情况下表现优异,但在训练数据不足的情况下则表现不佳。一个极端的例子是文本检索(零训练数据),其中判别学习是不可能的,而像BM25这样的启发式方法将领域知识(主题关键字查询)与生成学习(朴素贝叶斯)相结合,占主导地位。在过去工作的基础上,我们发现基于主题关键词的贝叶斯逻辑回归的bm25启发的高斯先验比通常的L2(零模式,均匀方差)高斯先验提供了更好的有效性。在两个高查全率检索数据集上,随着训练数据量的增加,所得模型从BM25水平的有效性平稳地过渡到判别有效性,即使在大量训练数据可用时也能主导L2正则化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信