High throughput and programmable online trafficclassifier on FPGA

Da Tong, Lu Sun, Kiran Kumar Matam, V. Prasanna
{"title":"High throughput and programmable online trafficclassifier on FPGA","authors":"Da Tong, Lu Sun, Kiran Kumar Matam, V. Prasanna","doi":"10.1145/2435264.2435307","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) algorithms have been shown to be effective in classifying the dynamic internet traffic today. Using additional features and sophisticated ML techniques can improve accuracy and can classify a broad range of application classes. Realizing such classifiers to meet high data rates is challenging. In this paper, we propose two architectures to realize complete online traffic classifier using flow-level features. First, we develop a traffic classifier based on C4.5 decision tree algorithm and Entropy-MDL discretization algorithm. It achieves an accuracy of 97.92% when classifying a traffic trace consisting of eight application classes. Next, we accelerate our classifier using two architectures on FPGA. One architecture stores the classifier in on-chip distributed RAM. It is designed to sustain a high throughput. The other architecture stores the classifier in block RAM. It is designed to operate with small hardware footprint and thus built at low hardware cost. Experimental results show that our high throughput architecture can sustain a throughput of $550$ Gbps assuming 40 Byte packet size. Our low cost architecture demonstrates a 22% better resource efficiency than the high throughput design. It can be easily replicated to achieve $449$ Gbps while supporting 160 input traffic streams concurrently. Both architectures are parameterizable and programmable to support any binary-tree-based traffic classifier. We develop a tool which allows users to easily map a binary-tree-based classifier to hardware. The tool takes a classifier as input and automatically generates the Verilog code for the corresponding hardware architecture.","PeriodicalId":87257,"journal":{"name":"FPGA. ACM International Symposium on Field-Programmable Gate Arrays","volume":"79 1","pages":"255-264"},"PeriodicalIF":0.0000,"publicationDate":"2013-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FPGA. ACM International Symposium on Field-Programmable Gate Arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2435264.2435307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Machine learning (ML) algorithms have been shown to be effective in classifying the dynamic internet traffic today. Using additional features and sophisticated ML techniques can improve accuracy and can classify a broad range of application classes. Realizing such classifiers to meet high data rates is challenging. In this paper, we propose two architectures to realize complete online traffic classifier using flow-level features. First, we develop a traffic classifier based on C4.5 decision tree algorithm and Entropy-MDL discretization algorithm. It achieves an accuracy of 97.92% when classifying a traffic trace consisting of eight application classes. Next, we accelerate our classifier using two architectures on FPGA. One architecture stores the classifier in on-chip distributed RAM. It is designed to sustain a high throughput. The other architecture stores the classifier in block RAM. It is designed to operate with small hardware footprint and thus built at low hardware cost. Experimental results show that our high throughput architecture can sustain a throughput of $550$ Gbps assuming 40 Byte packet size. Our low cost architecture demonstrates a 22% better resource efficiency than the high throughput design. It can be easily replicated to achieve $449$ Gbps while supporting 160 input traffic streams concurrently. Both architectures are parameterizable and programmable to support any binary-tree-based traffic classifier. We develop a tool which allows users to easily map a binary-tree-based classifier to hardware. The tool takes a classifier as input and automatically generates the Verilog code for the corresponding hardware architecture.
基于FPGA的高吞吐量可编程在线流量分类器
机器学习(ML)算法已被证明是有效的分类动态互联网流量今天。使用额外的功能和复杂的ML技术可以提高准确性,并可以对广泛的应用程序类进行分类。实现这样的分类器以满足高数据速率是具有挑战性的。本文提出了两种利用流级特征实现完整在线流量分类器的体系结构。首先,我们开发了一个基于C4.5决策树算法和熵- mdl离散化算法的流量分类器。当对由8个应用类组成的流量轨迹进行分类时,准确率达到97.92%。接下来,我们在FPGA上使用两种架构来加速我们的分类器。一种体系结构将分类器存储在片上分布式RAM中。它的设计是为了维持高吞吐量。另一种体系结构将分类器存储在块RAM中。它被设计为使用较小的硬件空间,因此以较低的硬件成本构建。实验结果表明,假设数据包大小为40字节,我们的高吞吐量架构可以维持550美元/ Gbps的吞吐量。我们的低成本架构比高吞吐量设计的资源效率高22%。它可以很容易地复制到$449$ Gbps,同时支持160个输入流量流。这两种体系结构都是可参数化和可编程的,以支持任何基于二叉树的流量分类器。我们开发了一个工具,使用户可以轻松地将基于二叉树的分类器映射到硬件。该工具将分类器作为输入,并自动为相应的硬件体系结构生成Verilog代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信