Optimal delay constrained offloading for vehicular edge computing networks

Ke Zhang, Y. Mao, S. Leng, Sabita Maharjan, Yan Zhang
{"title":"Optimal delay constrained offloading for vehicular edge computing networks","authors":"Ke Zhang, Y. Mao, S. Leng, Sabita Maharjan, Yan Zhang","doi":"10.1109/ICC.2017.7997360","DOIUrl":null,"url":null,"abstract":"The increasing number of smart vehicles and their resource hungry applications pose new challenges in terms of computation and processing for providing reliable and efficient vehicular services. Mobile Edge Computing (MEC) is a new paradigm with potential to improve vehicular services through computation offloading in close proximity to mobile vehicles. However, in the road with dense traffic flow, the computation limitation of these MEC servers may endanger the quality of offloading service. To address the problem, we propose a hierarchical cloud-based Vehicular Edge Computing (VEC) offloading framework, where a backup computing server in the neighborhood is introduced to make up for the deficit computing resources of MEC servers. Based on this framework, we adopt a Stackelberg game theoretic approach to design an optimal multilevel offloading scheme, which maximizes the utilities of both the vehicles and the computing servers. Furthermore, to obtain the optimal offloading strategies, we present an iterative distributed algorithm and prove its convergence. Numerical results indicate that our proposed scheme greatly enhances the utility of the offloading service providers.","PeriodicalId":6517,"journal":{"name":"2017 IEEE International Conference on Communications (ICC)","volume":"16 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"220","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Communications (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC.2017.7997360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 220

Abstract

The increasing number of smart vehicles and their resource hungry applications pose new challenges in terms of computation and processing for providing reliable and efficient vehicular services. Mobile Edge Computing (MEC) is a new paradigm with potential to improve vehicular services through computation offloading in close proximity to mobile vehicles. However, in the road with dense traffic flow, the computation limitation of these MEC servers may endanger the quality of offloading service. To address the problem, we propose a hierarchical cloud-based Vehicular Edge Computing (VEC) offloading framework, where a backup computing server in the neighborhood is introduced to make up for the deficit computing resources of MEC servers. Based on this framework, we adopt a Stackelberg game theoretic approach to design an optimal multilevel offloading scheme, which maximizes the utilities of both the vehicles and the computing servers. Furthermore, to obtain the optimal offloading strategies, we present an iterative distributed algorithm and prove its convergence. Numerical results indicate that our proposed scheme greatly enhances the utility of the offloading service providers.
车辆边缘计算网络的最优延迟约束卸载
越来越多的智能汽车及其资源密集型应用在计算和处理方面提出了新的挑战,以提供可靠和高效的车辆服务。移动边缘计算(MEC)是一种新的模式,有可能通过在靠近移动车辆的地方卸载计算来改善车辆服务。然而,在交通流量密集的道路上,这些MEC服务器的计算限制可能会危及卸载服务的质量。为了解决这一问题,我们提出了一种基于云的层次化车辆边缘计算(VEC)卸载框架,该框架在邻近地区引入备份计算服务器来弥补MEC服务器的计算资源不足。在此基础上,采用Stackelberg博弈论方法设计了一种多级卸载方案,使车辆和计算服务器的效用最大化。为了得到最优卸载策略,提出了一种迭代分布式算法,并证明了其收敛性。数值结果表明,该方案极大地提高了卸载服务提供商的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信