An inexact alternating direction method of multipliers for a kind of nonlinear complementarity problems

IF 1.1 Q2 MATHEMATICS, APPLIED
Jiewen He, Chi Lei, Chenyang Shi, Seakweng Vong
{"title":"An inexact alternating direction method of multipliers for a kind of nonlinear complementarity problems","authors":"Jiewen He, Chi Lei, Chenyang Shi, Seakweng Vong","doi":"10.3934/naco.2020030","DOIUrl":null,"url":null,"abstract":"Many kinds of practical problems can be formulated as nonlinear complementarity problems. In this paper, an inexact alternating direction method of multipliers for the solution of a kind of nonlinear complementarity problems is proposed. The convergence analysis of the method is given. Numerical results confirm the theoretical analysis, and show that the proposed method can be more efficient and faster than the modulus-based Jacobi, Gauss-Seidel and Successive Overrelaxation method when the dimension of the problem being solved is large.","PeriodicalId":44957,"journal":{"name":"Numerical Algebra Control and Optimization","volume":"12 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algebra Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/naco.2020030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 6

Abstract

Many kinds of practical problems can be formulated as nonlinear complementarity problems. In this paper, an inexact alternating direction method of multipliers for the solution of a kind of nonlinear complementarity problems is proposed. The convergence analysis of the method is given. Numerical results confirm the theoretical analysis, and show that the proposed method can be more efficient and faster than the modulus-based Jacobi, Gauss-Seidel and Successive Overrelaxation method when the dimension of the problem being solved is large.
一类非线性互补问题的乘法器的不精确交替方向法
许多实际问题都可以表述为非线性互补问题。本文提出了求解一类非线性互补问题的乘法器不精确交替方向法。给出了该方法的收敛性分析。数值结果证实了理论分析,并表明当待解问题的维数较大时,该方法比基于模的Jacobi法、Gauss-Seidel法和逐次过松弛法更有效、更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
62
期刊介绍: Numerical Algebra, Control and Optimization (NACO) aims at publishing original papers on any non-trivial interplay between control and optimization, and numerical techniques for their underlying linear and nonlinear algebraic systems. Topics of interest to NACO include the following: original research in theory, algorithms and applications of optimization; numerical methods for linear and nonlinear algebraic systems arising in modelling, control and optimisation; and original theoretical and applied research and development in the control of systems including all facets of control theory and its applications. In the application areas, special interests are on artificial intelligence and data sciences. The journal also welcomes expository submissions on subjects of current relevance to readers of the journal. The publication of papers in NACO is free of charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信