Monopole Floer Homology, Eigenform Multiplicities, and the Seifert–Weber Dodecahedral Space

Francesco Lin, Michael Lipnowski
{"title":"Monopole Floer Homology, Eigenform Multiplicities, and the Seifert–Weber Dodecahedral Space","authors":"Francesco Lin, Michael Lipnowski","doi":"10.1093/imrn/rnaa310","DOIUrl":null,"url":null,"abstract":"We show that the Seifert-Weber dodecahedral space $\\mathsf{SW}$ is an $L$-space. The proof builds on our work relating Floer homology and spectral geometry of hyperbolic three-manifolds. A direct application of our previous techniques runs into difficulties arising from the computational complexity of the problem. We overcome this by exploiting the large symmetry group and the arithmetic and tetrahedral group structure of $\\mathsf{SW}$ to prove that small eigenvalues on coexact $1$-forms must have large multiplicity.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imrn/rnaa310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We show that the Seifert-Weber dodecahedral space $\mathsf{SW}$ is an $L$-space. The proof builds on our work relating Floer homology and spectral geometry of hyperbolic three-manifolds. A direct application of our previous techniques runs into difficulties arising from the computational complexity of the problem. We overcome this by exploiting the large symmetry group and the arithmetic and tetrahedral group structure of $\mathsf{SW}$ to prove that small eigenvalues on coexact $1$-forms must have large multiplicity.
单极花同调、本征多重性与Seifert-Weber十二面体空间
我们证明了Seifert-Weber十二面体空间$\mathsf{SW}$是一个$L$-空间。这个证明建立在我们关于双曲三流形的花同调和谱几何的工作的基础上。由于问题的计算复杂性,直接应用我们前面的技术会遇到困难。我们利用$\mathsf{SW}$的大对称群和算术四面体群结构,证明了$ $1$-形式上的小特征值必须具有大的多重性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信