AdaTransform: Adaptive Data Transformation

Zhiqiang Tang, Xi Peng, Tingfeng Li, Yizhe Zhu, Dimitris N. Metaxas
{"title":"AdaTransform: Adaptive Data Transformation","authors":"Zhiqiang Tang, Xi Peng, Tingfeng Li, Yizhe Zhu, Dimitris N. Metaxas","doi":"10.1109/ICCV.2019.00309","DOIUrl":null,"url":null,"abstract":"Data augmentation is widely used to increase data variance in training deep neural networks. However, previous methods require either comprehensive domain knowledge or high computational cost. Can we learn data transformation automatically and efficiently with limited domain knowledge? Furthermore, can we leverage data transformation to improve not only network training but also network testing? In this work, we propose adaptive data transformation to achieve the two goals. The AdaTransform can increase data variance in training and decrease data variance in testing. Experiments on different tasks prove that it can improve generalization performance.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"171 1","pages":"2998-3006"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Data augmentation is widely used to increase data variance in training deep neural networks. However, previous methods require either comprehensive domain knowledge or high computational cost. Can we learn data transformation automatically and efficiently with limited domain knowledge? Furthermore, can we leverage data transformation to improve not only network training but also network testing? In this work, we propose adaptive data transformation to achieve the two goals. The AdaTransform can increase data variance in training and decrease data variance in testing. Experiments on different tasks prove that it can improve generalization performance.
adattransform:自适应数据转换
在深度神经网络训练中,数据增强被广泛用于增加数据方差。然而,以往的方法要么需要全面的领域知识,要么需要较高的计算成本。我们能否在有限的领域知识下自动高效地学习数据转换?此外,我们是否可以利用数据转换来改进网络训练和网络测试?在这项工作中,我们提出了自适应数据转换来实现这两个目标。adattransform可以增加训练中的数据方差,减少测试中的数据方差。在不同任务上的实验证明,该方法可以提高泛化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信