Broad Autoencoder Features Learning for Classification Problem

Pub Date : 2021-10-01 DOI:10.4018/IJCINI.20211001.OA23
Ting Wang, Wing W. Y. Ng, Wendi Li, S. Kwong
{"title":"Broad Autoencoder Features Learning for Classification Problem","authors":"Ting Wang, Wing W. Y. Ng, Wendi Li, S. Kwong","doi":"10.4018/IJCINI.20211001.OA23","DOIUrl":null,"url":null,"abstract":"Activation functions such as tanh and sigmoid functions are widely used in deep neural networks (DNNs) and pattern classification problems. To take advantage of different activation functions, this work proposes the broad autoencoder features (BAF). The BAF consists of four parallel-connected stacked autoencoders (SAEs), and each of them uses a different activation function, including sigmoid, tanh, relu, and softplus. The final learned features can merge by various nonlinear mappings from original input features with such a broad setting. It not only helps to excavate more information from the original input features through utilizing different activation functions, but also provides information diversity and increases the number of input nodes for classifier by parallel-connected strategy. Experimental results show that the BAF yields better-learned features and classification performances.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJCINI.20211001.OA23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Activation functions such as tanh and sigmoid functions are widely used in deep neural networks (DNNs) and pattern classification problems. To take advantage of different activation functions, this work proposes the broad autoencoder features (BAF). The BAF consists of four parallel-connected stacked autoencoders (SAEs), and each of them uses a different activation function, including sigmoid, tanh, relu, and softplus. The final learned features can merge by various nonlinear mappings from original input features with such a broad setting. It not only helps to excavate more information from the original input features through utilizing different activation functions, but also provides information diversity and increases the number of input nodes for classifier by parallel-connected strategy. Experimental results show that the BAF yields better-learned features and classification performances.
分享
查看原文
广义自编码器特征学习分类问题
tanh和sigmoid函数等激活函数在深度神经网络(dnn)和模式分类问题中有着广泛的应用。为了利用不同的激活函数,本工作提出了广泛的自编码器特征(BAF)。BAF由四个并行连接的堆叠自编码器(sae)组成,每个自编码器使用不同的激活函数,包括sigmoid, tanh, relu和softplus。在如此广泛的设置下,最终学习到的特征可以通过与原始输入特征的各种非线性映射进行合并。它不仅通过利用不同的激活函数从原始输入特征中挖掘出更多的信息,而且通过并行连接策略为分类器提供了信息多样性,增加了输入节点的数量。实验结果表明,BAF具有较好的特征学习效果和分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信