Parametric Topological Entropy for Multivalued Maps and Differential Inclusions with Nonautonomous Impulses

J. Andres, Pavel Ludvík
{"title":"Parametric Topological Entropy for Multivalued Maps and Differential Inclusions with Nonautonomous Impulses","authors":"J. Andres, Pavel Ludvík","doi":"10.1142/s0218127423501134","DOIUrl":null,"url":null,"abstract":"The main purpose of this paper is to investigate a parametric topological entropy for impulsive differential inclusions on tori. In this way, besides other matters, we would like to extend our recent results concerning impulsive differential equations as well as those on “nonparametric” topological entropy to impulsive differential inclusions. Parametric topological entropy, which is usually called a topological entropy for nonautonomous dynamical systems, is considered here via the compositions of associated multivalued Poincaré translation operators with the single-valued time-dependent impulsive maps. On compact polyhedra and, in particular on tori, parametric topological entropy for families of admissible multivalued maps can be estimated from below by means Ivanov-type inequality in terms of the asymptotic Nielsen and Lefschetz numbers which are, unlike the topological entropy, homotopy invariants. In the scalar case, an effective criterion for a positive parametric topological entropy can be given by topological degree arguments for equi-continuous impulsive maps. In a single-valued nonparametric case, a positive topological entropy usually signifies topological chaos. Some simple illustrative examples are provided.","PeriodicalId":13688,"journal":{"name":"Int. J. Bifurc. Chaos","volume":"23 1","pages":"2350113:1-2350113:13"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bifurc. Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218127423501134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The main purpose of this paper is to investigate a parametric topological entropy for impulsive differential inclusions on tori. In this way, besides other matters, we would like to extend our recent results concerning impulsive differential equations as well as those on “nonparametric” topological entropy to impulsive differential inclusions. Parametric topological entropy, which is usually called a topological entropy for nonautonomous dynamical systems, is considered here via the compositions of associated multivalued Poincaré translation operators with the single-valued time-dependent impulsive maps. On compact polyhedra and, in particular on tori, parametric topological entropy for families of admissible multivalued maps can be estimated from below by means Ivanov-type inequality in terms of the asymptotic Nielsen and Lefschetz numbers which are, unlike the topological entropy, homotopy invariants. In the scalar case, an effective criterion for a positive parametric topological entropy can be given by topological degree arguments for equi-continuous impulsive maps. In a single-valued nonparametric case, a positive topological entropy usually signifies topological chaos. Some simple illustrative examples are provided.
具有非自治脉冲的多值映射和微分包含的参数拓扑熵
本文的主要目的是研究环面上脉冲微分包含的参数拓扑熵。这样,除了其他问题外,我们还想把我们最近关于脉冲微分方程和“非参数”拓扑熵的结果推广到脉冲微分包含。参数拓扑熵通常被称为非自治动力系统的拓扑熵,这里通过关联的多值poincar平移算子与单值时变脉冲映射的组合来考虑。在紧多面体上,特别是环面上,可容许多值映射族的参数拓扑熵可以用渐近Nielsen数和Lefschetz数的ivanov型不等式从下面估计出来,这两个数与拓扑熵不同,是同伦不变量。在标量情况下,可以用等连续脉冲映射的拓扑度参数给出正参数拓扑熵的有效判据。在单值非参数情况下,正拓扑熵通常表示拓扑混沌。提供了一些简单的说明性示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信