Synthesis, DFT Calculations to investigate the Structure Electronic, Absorption Electronic Spectra, Antimicrobial Activity Application, and Non-Linear Optical Analysis of Pyridinyl and Pyrimidinyl Phosphonates Schemes

IF 1 4区 工程技术 Q4 CHEMISTRY, MULTIDISCIPLINARY
S. Hussien, T. Ali, S. M. Abdel‐kariem
{"title":"Synthesis, DFT Calculations to investigate the Structure Electronic, Absorption Electronic Spectra, Antimicrobial Activity Application, and Non-Linear Optical Analysis of Pyridinyl and Pyrimidinyl Phosphonates Schemes","authors":"S. Hussien, T. Ali, S. M. Abdel‐kariem","doi":"10.30492/IJCCE.2021.523029.4523","DOIUrl":null,"url":null,"abstract":"In this paper, the structure optimized and calculations electronic properties for the studied of two compounds which are 2 is Diethyl {5-[(2-hydroxy-5-methyl phenyl) carbonyl]-2-thioxo-1,2,3,4-tetrahydropyrimidin-4-yl} - phosphonate (2), compound 4 is Diethyl {6-amino-1-(4-chlorophenyl)-5-cyano-3-[(2-hydroxy-5-methyl phenyl)carbonyl]-1,2-dihydropyridin-2-yl]}phosphonate (4) have been performed by using to DFT the method at the B3LYP/6-311++G (d, p) theory level. UV-Vis spectra, in both methanol and dioxane solvents, have been employed for two compounds 2 and 4 by density functional time-dependent theory (TD-DFT) calculations at the same level of calculation. The method of Coulomb-attenuating (CAM-B3LYP) and Corrected Linear Response Polarizable Continuum Model (CLR) PCM studied for theoretically obtaining the absorption electronic spectra in the gas phase, methanol, and dioxane, respectively; indicate a good agreement with the observed spectra and FT-IR, vibrational spectra were calculated. The GIAO method calculated the 1H and 13C NMR chemical shifts theoretically values which reflect better coincidence with the experimental chemical shifts. The dihedral angles result of calculations show that two compounds 2 and 4 are non-planar. The stability of the two compounds 2 and 4, the hyper conjugative interactions, the delocalization of the atomic charges were analyzed with the Natural Orbital Bond analysis (NBO). The relocation of electronic density and the electronic structures were discussed. Studied functional density local descriptors, (MEP) Molecular Electrostatic Potential, molecular border orbitals, and absorption spectral. Analysis of the global descriptors revealed that compound 4 is the most reactive with an energy difference between the border orbital of ΔEgap = 3.605 eV. Furthermore, this compound 4 is the less stable, the softest, and has the greatest electronic exchange capacity of the other compound 2 studied. Studied by DFT calculations (SAR) structure-activity relationship and contacted with practical antimicrobial results for compounds 2 and 4.","PeriodicalId":14572,"journal":{"name":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.30492/IJCCE.2021.523029.4523","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the structure optimized and calculations electronic properties for the studied of two compounds which are 2 is Diethyl {5-[(2-hydroxy-5-methyl phenyl) carbonyl]-2-thioxo-1,2,3,4-tetrahydropyrimidin-4-yl} - phosphonate (2), compound 4 is Diethyl {6-amino-1-(4-chlorophenyl)-5-cyano-3-[(2-hydroxy-5-methyl phenyl)carbonyl]-1,2-dihydropyridin-2-yl]}phosphonate (4) have been performed by using to DFT the method at the B3LYP/6-311++G (d, p) theory level. UV-Vis spectra, in both methanol and dioxane solvents, have been employed for two compounds 2 and 4 by density functional time-dependent theory (TD-DFT) calculations at the same level of calculation. The method of Coulomb-attenuating (CAM-B3LYP) and Corrected Linear Response Polarizable Continuum Model (CLR) PCM studied for theoretically obtaining the absorption electronic spectra in the gas phase, methanol, and dioxane, respectively; indicate a good agreement with the observed spectra and FT-IR, vibrational spectra were calculated. The GIAO method calculated the 1H and 13C NMR chemical shifts theoretically values which reflect better coincidence with the experimental chemical shifts. The dihedral angles result of calculations show that two compounds 2 and 4 are non-planar. The stability of the two compounds 2 and 4, the hyper conjugative interactions, the delocalization of the atomic charges were analyzed with the Natural Orbital Bond analysis (NBO). The relocation of electronic density and the electronic structures were discussed. Studied functional density local descriptors, (MEP) Molecular Electrostatic Potential, molecular border orbitals, and absorption spectral. Analysis of the global descriptors revealed that compound 4 is the most reactive with an energy difference between the border orbital of ΔEgap = 3.605 eV. Furthermore, this compound 4 is the less stable, the softest, and has the greatest electronic exchange capacity of the other compound 2 studied. Studied by DFT calculations (SAR) structure-activity relationship and contacted with practical antimicrobial results for compounds 2 and 4.
吡啶基和嘧啶基膦酸盐方案的合成、DFT计算研究、结构电子、吸收电子光谱、抗菌活性应用和非线性光学分析
本文研究的结构优化和计算电子性质的两种化合物2是二乙基{5 - [(2-hydroxy-5-methyl苯基)羰基]2-thioxo-1, 2, 3, 4-tetrahydropyrimidin-4-yl} -膦酸酯(2),化合物4是二乙基{6-amino-1 - (4-chlorophenyl) 5-cyano-3羰基(2-hydroxy-5-methyl苯基)1,2-dihydropyridin-2-yl]}膦酸酯(4)执行利用DFT方法在B3LYP / 6 - 311 + + G (d, p)理论水平。通过密度泛函时间依赖理论(TD-DFT)计算,在相同的计算水平上,对两种化合物2和4在甲醇和二氧六环溶剂中的紫外可见光谱进行了计算。研究了库仑衰减法(CAM-B3LYP)和修正线性响应极化连续体模型(CLR) PCM分别在气相、甲醇和二恶烷中的吸收电子能谱的理论计算方法;结果表明,与实测光谱和红外光谱吻合较好,并计算了振动谱。GIAO方法计算的1H和13C核磁共振化学位移理论值与实验化学位移的符合性较好。二面角的计算结果表明,化合物2和4是非平面的。用自然轨道键分析(NBO)分析了化合物2和4的稳定性、超共轭相互作用和原子电荷的离域。讨论了电子密度的迁移和电子结构。研究了功能密度局部描述子、分子静电势、分子边界轨道和吸收光谱。全局描述子分析表明,化合物4的反应性最强,边界轨道的能量差为ΔEgap = 3.605 eV。此外,该化合物4是所研究的其他化合物2中最不稳定、最柔软、电子交换容量最大的。通过DFT计算(SAR)研究了化合物2和4的构效关系,并与实际抑菌结果相联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
22.20%
发文量
0
审稿时长
6-12 weeks
期刊介绍: The aim of the Iranian Journal of Chemistry and Chemical Engineering is to foster the growth of educational, scientific and Industrial Research activities among chemists and chemical engineers and to provide a medium for mutual communication and relations between Iranian academia and the industry on the one hand, and the world the scientific community on the other.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信