ОБ ОЦЕНКАХ ВЕЛИЧИН РЕЗУЛЬТАНТОВ ЦЕЛОЧИСЛЕННЫХ ПОЛИНОМОВ БЕЗ ОБЩИХ КОРНЕЙ

Алексей Сергеевич Кудин
{"title":"ОБ ОЦЕНКАХ ВЕЛИЧИН РЕЗУЛЬТАНТОВ ЦЕЛОЧИСЛЕННЫХ ПОЛИНОМОВ БЕЗ ОБЩИХ КОРНЕЙ","authors":"Алексей Сергеевич Кудин","doi":"10.29235/1561-8323-2018-62-1-18-23","DOIUrl":null,"url":null,"abstract":"In the article we present an improvement to the lemma on the order of simultaneous zero approximation by the values of two integer polynomials without common roots from A. O. Gelfond’s monograph “Transcendental and algebraic numbers”. The lemma says that if two integer polynomials P1 and P2 of degree not exceeding n1 and n2 and of height not exceeding Qµ1 and Qµ2 respectively having no roots in common take values 1 Px Q 1( ) −τ < and 2 Px Q 2 ( ) −τ < at some transcendental point x ∈i, then min( , ) τ τ < µ + µ +δ 1 2 12 21 n n . Gelfond’s lemma and similar results have important applications to many problems of the metric theory of Diophantine approximation. One of such applications is the result due to V. Bernik (1983) on the upper bound for the Hausdorff dimension of the set of real numbers with specified order of zero approximation by the values of integer polynomials. This result along with the result of A. Baker and W. Schmidt (1970) on the lower bound of the Hausdorff dimension of the set mentioned above gives the exact formula. In order to prove the upper bound V. Bernik improved and extended Gelfond’s lemma by considering the values of polynomials of degree not exceeding n and of height not exceeding Qµ on some interval of length Q−η and obtaining a stronger inequality τ+µ+ τ+µ−η < µ +δ 2max( , 0) 2 , n τ= τ τ min( , ). 1 2 However, the need to consider the same estimates for the degree and height of the polynomials is still restrictive and limits the range of problems this result could be applied to. In our work we consider the values of polynomials of different degrees and heights on an interval and obtain a stronger estimate by using higher order derivatives, thus improving and extending Gelfond’s lemma and existing similar results. The result is obtained using the methods of the theory of transcendental numbers.","PeriodicalId":11227,"journal":{"name":"Doklady Akademii nauk","volume":"56 1","pages":"18-23"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Akademii nauk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29235/1561-8323-2018-62-1-18-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the article we present an improvement to the lemma on the order of simultaneous zero approximation by the values of two integer polynomials without common roots from A. O. Gelfond’s monograph “Transcendental and algebraic numbers”. The lemma says that if two integer polynomials P1 and P2 of degree not exceeding n1 and n2 and of height not exceeding Qµ1 and Qµ2 respectively having no roots in common take values 1 Px Q 1( ) −τ < and 2 Px Q 2 ( ) −τ < at some transcendental point x ∈i, then min( , ) τ τ < µ + µ +δ 1 2 12 21 n n . Gelfond’s lemma and similar results have important applications to many problems of the metric theory of Diophantine approximation. One of such applications is the result due to V. Bernik (1983) on the upper bound for the Hausdorff dimension of the set of real numbers with specified order of zero approximation by the values of integer polynomials. This result along with the result of A. Baker and W. Schmidt (1970) on the lower bound of the Hausdorff dimension of the set mentioned above gives the exact formula. In order to prove the upper bound V. Bernik improved and extended Gelfond’s lemma by considering the values of polynomials of degree not exceeding n and of height not exceeding Qµ on some interval of length Q−η and obtaining a stronger inequality τ+µ+ τ+µ−η < µ +δ 2max( , 0) 2 , n τ= τ τ min( , ). 1 2 However, the need to consider the same estimates for the degree and height of the polynomials is still restrictive and limits the range of problems this result could be applied to. In our work we consider the values of polynomials of different degrees and heights on an interval and obtain a stronger estimate by using higher order derivatives, thus improving and extending Gelfond’s lemma and existing similar results. The result is obtained using the methods of the theory of transcendental numbers.
本文对A. O. Gelfond的专著《超越与代数数》中关于两个无公根整数多项式的值同时逼近零的阶的引理作了改进。引理说,如果两个整数多项式P1和P2的阶不超过n1和n2,高度不超过Qµ1和Qµ2,它们分别在公取值1 Px q1()−τ <和2 Px q2()−τ <中没有根,在某个超越点x∈i处,则min(,) τ τ <µ+µ+δ 12 12 21 n n。Gelfond引理和类似的结果在丢番图近似的度量理论的许多问题中有重要的应用。其中一个应用是V. Bernik(1983)关于由整数多项式的值近似的指定阶的实数集的Hausdorff维的上界的结果。这一结果与A. Baker和W. Schmidt(1970)关于上述集合的Hausdorff维数下界的结果一起给出了精确的公式。为了证明v的上界,Bernik通过在长度为Q−η的区间上考虑阶数不超过n且高度不超过Qµ的多项式的值,改进和推广了Gelfond引理,得到了一个更强的不等式τ+µ+ τ+µ−η <µ+ δ 2max(, 0) 2, n τ= τ τ min(,)。12然而,考虑多项式的阶和高度的相同估计的需要仍然是限制性的,并且限制了这一结果可以适用的问题的范围。本文研究了区间上不同阶高多项式的值,利用高阶导数得到了一个更强的估计,从而改进和推广了Gelfond引理和已有的类似结果。利用超越数理论的方法得到了这一结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信