A comparative study of multiclass feature selection on RNAseq and microarray data

Silu Zhang, Junqing Wang, Keli Xu, Megan M. York, Yingyuan Mo, Yixin Chen, Yunyun Zhou
{"title":"A comparative study of multiclass feature selection on RNAseq and microarray data","authors":"Silu Zhang, Junqing Wang, Keli Xu, Megan M. York, Yingyuan Mo, Yixin Chen, Yunyun Zhou","doi":"10.1504/IJCBDD.2019.10021274","DOIUrl":null,"url":null,"abstract":"Gene expression profiles are widely used for identifying phenotype-specific biomarkers in clinical cancer research. By examining important genes expressed in different phenotypes, patients can be classified into different treatment groups. Microarray and RNAseq are the two leading technologies to measure gene expression data. However, due to the heterogeneity of the two platforms, their selected genes are different. In this project, we systematically compared the breast cancer subtype classification accuracies from the selected genes by four popular multiclass feature selection algorithms and discussed the strengths and weakness of selected genes across different platforms and cohorts. Our results showed that the classification of selected genes performs best within the same platform across different cohorts. It suggested that merging the dataset belonging to the same platform will increase the statistical power and improve the prediction accuracy of the selected gene for multiclass classification analysis.","PeriodicalId":13612,"journal":{"name":"Int. J. Comput. Biol. Drug Des.","volume":"72 1","pages":"128-142"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Biol. Drug Des.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCBDD.2019.10021274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Gene expression profiles are widely used for identifying phenotype-specific biomarkers in clinical cancer research. By examining important genes expressed in different phenotypes, patients can be classified into different treatment groups. Microarray and RNAseq are the two leading technologies to measure gene expression data. However, due to the heterogeneity of the two platforms, their selected genes are different. In this project, we systematically compared the breast cancer subtype classification accuracies from the selected genes by four popular multiclass feature selection algorithms and discussed the strengths and weakness of selected genes across different platforms and cohorts. Our results showed that the classification of selected genes performs best within the same platform across different cohorts. It suggested that merging the dataset belonging to the same platform will increase the statistical power and improve the prediction accuracy of the selected gene for multiclass classification analysis.
基于RNAseq和微阵列数据的多类特征选择比较研究
基因表达谱在临床癌症研究中广泛用于鉴定表型特异性生物标志物。通过检测不同表型中表达的重要基因,可以将患者分为不同的治疗组。微阵列和RNAseq是测量基因表达数据的两种主要技术。然而,由于两个平台的异质性,它们选择的基因是不同的。在本项目中,我们系统地比较了四种流行的多类特征选择算法对所选基因的乳腺癌亚型分类准确性,并讨论了不同平台和群体中所选基因的优缺点。我们的研究结果表明,在不同队列的同一平台中,所选基因的分类效果最好。这表明,合并属于同一平台的数据集可以增加统计能力,提高所选基因的多类分类分析的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信