On stabilization of solutions of higher order evolution inequalities

Asymptot. Anal. Pub Date : 2018-03-18 DOI:10.3233/asy-191522
A. Kon'kov, A. Shishkov
{"title":"On stabilization of solutions of higher order evolution inequalities","authors":"A. Kon'kov, A. Shishkov","doi":"10.3233/asy-191522","DOIUrl":null,"url":null,"abstract":"We obtain sharp conditions guaranteeing that every non-negative weak solution of the inequality $$ \\sum_{|\\alpha| = m} \n\\partial^\\alpha \na_\\alpha (x, t, u) \n- \nu_t \n\\ge \nf (x, t) g (u) \n\\quad \n\\mbox{in} {\\mathbb R}_+^{n+1} = {\\mathbb R}^n \\times (0, \\infty), \n\\quad \nm,n \\ge 1, $$ stabilizes to zero as $t \\to \\infty$. These conditions generalize the well-known Keller-Osserman condition on the grows of the function $g$ at infinity.","PeriodicalId":8603,"journal":{"name":"Asymptot. Anal.","volume":"17 1","pages":"1-17"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptot. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/asy-191522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We obtain sharp conditions guaranteeing that every non-negative weak solution of the inequality $$ \sum_{|\alpha| = m} \partial^\alpha a_\alpha (x, t, u) - u_t \ge f (x, t) g (u) \quad \mbox{in} {\mathbb R}_+^{n+1} = {\mathbb R}^n \times (0, \infty), \quad m,n \ge 1, $$ stabilizes to zero as $t \to \infty$. These conditions generalize the well-known Keller-Osserman condition on the grows of the function $g$ at infinity.
高阶演化不等式解的镇定性
我们得到了保证不等式$$ \sum_{|\alpha| = m} \partial^\alpha a_\alpha (x, t, u) - u_t \ge f (x, t) g (u) \quad \mbox{in} {\mathbb R}_+^{n+1} = {\mathbb R}^n \times (0, \infty), \quad m,n \ge 1, $$的所有非负弱解稳定于零的尖锐条件$t \to \infty$。这些条件推广了著名的Keller-Osserman条件关于函数$g$在无穷远处的增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信