DeLay: Robust Spatial Layout Estimation for Cluttered Indoor Scenes

Saumitro Dasgupta, Kuan Fang, Kevin Chen, S. Savarese
{"title":"DeLay: Robust Spatial Layout Estimation for Cluttered Indoor Scenes","authors":"Saumitro Dasgupta, Kuan Fang, Kevin Chen, S. Savarese","doi":"10.1109/CVPR.2016.73","DOIUrl":null,"url":null,"abstract":"We consider the problem of estimating the spatial layout of an indoor scene from a monocular RGB image, modeled as the projection of a 3D cuboid. Existing solutions to this problem often rely strongly on hand-engineered features and vanishing point detection, which are prone to failure in the presence of clutter. In this paper, we present a method that uses a fully convolutional neural network (FCNN) in conjunction with a novel optimization framework for generating layout estimates. We demonstrate that our method is robust in the presence of clutter and handles a wide range of highly challenging scenes. We evaluate our method on two standard benchmarks and show that it achieves state of the art results, outperforming previous methods by a wide margin.","PeriodicalId":6515,"journal":{"name":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"6 1","pages":"616-624"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"116","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2016.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 116

Abstract

We consider the problem of estimating the spatial layout of an indoor scene from a monocular RGB image, modeled as the projection of a 3D cuboid. Existing solutions to this problem often rely strongly on hand-engineered features and vanishing point detection, which are prone to failure in the presence of clutter. In this paper, we present a method that uses a fully convolutional neural network (FCNN) in conjunction with a novel optimization framework for generating layout estimates. We demonstrate that our method is robust in the presence of clutter and handles a wide range of highly challenging scenes. We evaluate our method on two standard benchmarks and show that it achieves state of the art results, outperforming previous methods by a wide margin.
延迟:混沌室内场景的鲁棒空间布局估计
我们考虑从单眼RGB图像估计室内场景的空间布局问题,建模为三维长方体的投影。这个问题的现有解决方案通常强烈依赖于手工设计的特征和消失点检测,这在存在杂乱的情况下容易失败。在本文中,我们提出了一种使用全卷积神经网络(FCNN)和一种新的优化框架来生成布局估计的方法。我们证明了我们的方法在杂乱的存在下是鲁棒的,并且可以处理各种极具挑战性的场景。我们在两个标准基准上评估我们的方法,并表明它达到了最先进的结果,远远优于以前的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信