Pattern recognition in Hopfield type networks with a finite range of connections

Eva Koscielny-Bunde
{"title":"Pattern recognition in Hopfield type networks with a finite range of connections","authors":"Eva Koscielny-Bunde","doi":"10.1051/JPHYS:0199000510170179700","DOIUrl":null,"url":null,"abstract":"We study pattern recognition in linear Hopfield type networks of N neurons where each neuron is connected to the z subsequent neurons such that the state of the i th neuron at time t+1 is determined by the states of neurons i+1, ..., i+z at time t. We find that for small values of z/N the retrieval behavior differs considerably from the behavior of diluted Hopfield networks. The maximum number of random patterns that can be retrieved increases in a non linear way with z and the asymptotic mean overlap between input and output patterns decreases sharply as z is decreased and reaches zero at a finite value of z","PeriodicalId":14747,"journal":{"name":"Journal De Physique","volume":"28 1","pages":"1797-1801"},"PeriodicalIF":0.0000,"publicationDate":"1990-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Physique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/JPHYS:0199000510170179700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We study pattern recognition in linear Hopfield type networks of N neurons where each neuron is connected to the z subsequent neurons such that the state of the i th neuron at time t+1 is determined by the states of neurons i+1, ..., i+z at time t. We find that for small values of z/N the retrieval behavior differs considerably from the behavior of diluted Hopfield networks. The maximum number of random patterns that can be retrieved increases in a non linear way with z and the asymptotic mean overlap between input and output patterns decreases sharply as z is decreased and reaches zero at a finite value of z
有限连接范围Hopfield型网络的模式识别
我们研究了N个神经元的线性Hopfield型网络的模式识别,其中每个神经元连接到z个后续神经元,使得第i个神经元在t+1时刻的状态由第i+1,…我们发现,对于z/N的小值,检索行为与稀释Hopfield网络的行为有很大的不同。可检索的随机模式的最大数量随z呈非线性增加,输入和输出模式之间的渐近平均重叠随着z的减小而急剧减小,并在z的有限值处达到零
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信