Stationary and multi-self-similar random fields with stochastic volatility

Pub Date : 2014-02-12 DOI:10.1080/17442508.2015.1012081
Almut E. D. Veraart
{"title":"Stationary and multi-self-similar random fields with stochastic volatility","authors":"Almut E. D. Veraart","doi":"10.1080/17442508.2015.1012081","DOIUrl":null,"url":null,"abstract":"This paper introduces stationary and multi-self-similar random fields which account for stochastic volatility and have type G marginal law. The stationary random fields are constructed using volatility modulated mixed moving average (MA) fields and their probabilistic properties are discussed. Also, two methods for parameterizing the weight functions in the MA representation are presented: one method is based on Fourier techniques and aims at reproducing a given correlation structure, the other method is based on ideas from stochastic partial differential equations. Moreover, using a generalized Lamperti transform we construct volatility modulated multi-self-similar random fields which have type G distribution.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17442508.2015.1012081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper introduces stationary and multi-self-similar random fields which account for stochastic volatility and have type G marginal law. The stationary random fields are constructed using volatility modulated mixed moving average (MA) fields and their probabilistic properties are discussed. Also, two methods for parameterizing the weight functions in the MA representation are presented: one method is based on Fourier techniques and aims at reproducing a given correlation structure, the other method is based on ideas from stochastic partial differential equations. Moreover, using a generalized Lamperti transform we construct volatility modulated multi-self-similar random fields which have type G distribution.
分享
查看原文
具有随机波动的平稳多自相似随机场
介绍了具有G型边际律的考虑随机波动的平稳随机场和多自相似随机场。利用波动调制混合移动平均场构造了平稳随机场,并讨论了它们的概率性质。此外,本文还提出了两种参数化加权函数的方法:一种方法是基于傅立叶技术,旨在再现给定的相关结构,另一种方法是基于随机偏微分方程的思想。此外,利用广义Lamperti变换构造了具有G型分布的波动性调制多自相似随机场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信