High dimensional robust M-estimation : arbitrary corruption and heavy tails

arXiv: Learning Pub Date : 2021-07-06 DOI:10.26153/TSW/15001
Liu Liu
{"title":"High dimensional robust M-estimation : arbitrary corruption and heavy tails","authors":"Liu Liu","doi":"10.26153/TSW/15001","DOIUrl":null,"url":null,"abstract":"We consider the problem of sparsity-constrained $M$-estimation when both explanatory and response variables have heavy tails (bounded 4-th moments), or a fraction of arbitrary corruptions. We focus on the $k$-sparse, high-dimensional regime where the number of variables $d$ and the sample size $n$ are related through $n \\sim k \\log d$. We define a natural condition we call the Robust Descent Condition (RDC), and show that if a gradient estimator satisfies the RDC, then Robust Hard Thresholding (IHT using this gradient estimator), is guaranteed to obtain good statistical rates. The contribution of this paper is in showing that this RDC is a flexible enough concept to recover known results, and obtain new robustness results. Specifically, new results include: (a) For $k$-sparse high-dimensional linear- and logistic-regression with heavy tail (bounded 4-th moment) explanatory and response variables, a linear-time-computable median-of-means gradient estimator satisfies the RDC, and hence Robust Hard Thresholding is minimax optimal; (b) When instead of heavy tails we have $O(1/\\sqrt{k}\\log(nd))$-fraction of arbitrary corruptions in explanatory and response variables, a near linear-time computable trimmed gradient estimator satisfies the RDC, and hence Robust Hard Thresholding is minimax optimal. We demonstrate the effectiveness of our approach in sparse linear, logistic regression, and sparse precision matrix estimation on synthetic and real-world US equities data.","PeriodicalId":8468,"journal":{"name":"arXiv: Learning","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26153/TSW/15001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

We consider the problem of sparsity-constrained $M$-estimation when both explanatory and response variables have heavy tails (bounded 4-th moments), or a fraction of arbitrary corruptions. We focus on the $k$-sparse, high-dimensional regime where the number of variables $d$ and the sample size $n$ are related through $n \sim k \log d$. We define a natural condition we call the Robust Descent Condition (RDC), and show that if a gradient estimator satisfies the RDC, then Robust Hard Thresholding (IHT using this gradient estimator), is guaranteed to obtain good statistical rates. The contribution of this paper is in showing that this RDC is a flexible enough concept to recover known results, and obtain new robustness results. Specifically, new results include: (a) For $k$-sparse high-dimensional linear- and logistic-regression with heavy tail (bounded 4-th moment) explanatory and response variables, a linear-time-computable median-of-means gradient estimator satisfies the RDC, and hence Robust Hard Thresholding is minimax optimal; (b) When instead of heavy tails we have $O(1/\sqrt{k}\log(nd))$-fraction of arbitrary corruptions in explanatory and response variables, a near linear-time computable trimmed gradient estimator satisfies the RDC, and hence Robust Hard Thresholding is minimax optimal. We demonstrate the effectiveness of our approach in sparse linear, logistic regression, and sparse precision matrix estimation on synthetic and real-world US equities data.
高维鲁棒m估计:任意损坏和重尾
当解释变量和响应变量都具有重尾(有界的第4阶矩)或任意损坏的一小部分时,我们考虑稀疏约束$M$估计问题。我们专注于$k$ -稀疏,高维状态,其中变量数量$d$和样本量$n$通过$n \sim k \log d$相关。我们定义了一个自然条件,我们称之为鲁棒下降条件(RDC),并表明,如果一个梯度估计满足RDC,那么鲁棒硬阈值(IHT)使用这个梯度估计,保证获得良好的统计率。本文的贡献在于表明RDC是一个足够灵活的概念,可以恢复已知结果,并获得新的鲁棒性结果。具体来说,新的结果包括:(a)对于$k$ -稀疏高维线性和逻辑回归,具有重尾(有界的第4矩)解释变量和响应变量,线性时间可计算的中位数梯度估计满足RDC,因此鲁棒硬阈值是最小最大最优的;(b)当我们在解释和响应变量中有$O(1/\sqrt{k}\log(nd))$ -任意损坏的分数时,一个近线性时间可计算的裁剪梯度估计器满足RDC,因此鲁棒硬阈值是最小最大最优的。我们证明了我们的方法在稀疏线性、逻辑回归和稀疏精度矩阵估计上对合成和真实美国股票数据的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信