Sensitivity and strong sensitivity on induced dynamical systems

IF 1.9 4区 数学 Q1 MATHEMATICS
Daniel Roberto Jardón, I. Sánchez
{"title":"Sensitivity and strong sensitivity on induced dynamical systems","authors":"Daniel Roberto Jardón, I. Sánchez","doi":"10.22111/IJFS.2021.6177","DOIUrl":null,"url":null,"abstract":"Given a metric space X, we consider the family of all normal upper semicontinuous fuzzy sets on X, denoted by $mathcal{F}(X)$, and a discrete dynamical system $(X,f)$. In this paper, we study when $(mathcal{F}(X), widehat{f})$ is (strongly) sensitive, where $widehat{f}$ is the Zadeh's extension of f and $mathcal{F}(X)$ is equipped with different metrics: The uniform metric, the Skorokhod metric, the sendograph metric and the endograph metric. We prove that the sensitivity in the induced dynamical system $(mathcal{K}(X),overline{f})$ is equivalent to the sensitivity in $ widehat{f} :mathcal{F}(X)to mathcal{F}(X) $ with respect to the uniform metric, the Skorokhod metric and the sendograph metric. We also show that the following conditions are equivalent:item {rm a)} $(X,f)$ is strongly sensitive;item {rm b)} $(mathcal{F}(X), widehat{f})$ is strongly sensitive, where $mathcal{F}(X)$ is equipped with the uniform metric;item {rm c)} $(mathcal{F}(X), widehat{f})$ is strongly sensitive, where $mathcal{F}(X)$ is equipped with the Skorokhod metric;item {rm d)} $(mathcal{F}(X), widehat{f})$ is strongly sensitive, where $mathcal{F}(X)$ is equipped with the sendograph metric.","PeriodicalId":54920,"journal":{"name":"Iranian Journal of Fuzzy Systems","volume":"55 1","pages":"69-78"},"PeriodicalIF":1.9000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Fuzzy Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.22111/IJFS.2021.6177","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a metric space X, we consider the family of all normal upper semicontinuous fuzzy sets on X, denoted by $mathcal{F}(X)$, and a discrete dynamical system $(X,f)$. In this paper, we study when $(mathcal{F}(X), widehat{f})$ is (strongly) sensitive, where $widehat{f}$ is the Zadeh's extension of f and $mathcal{F}(X)$ is equipped with different metrics: The uniform metric, the Skorokhod metric, the sendograph metric and the endograph metric. We prove that the sensitivity in the induced dynamical system $(mathcal{K}(X),overline{f})$ is equivalent to the sensitivity in $ widehat{f} :mathcal{F}(X)to mathcal{F}(X) $ with respect to the uniform metric, the Skorokhod metric and the sendograph metric. We also show that the following conditions are equivalent:item {rm a)} $(X,f)$ is strongly sensitive;item {rm b)} $(mathcal{F}(X), widehat{f})$ is strongly sensitive, where $mathcal{F}(X)$ is equipped with the uniform metric;item {rm c)} $(mathcal{F}(X), widehat{f})$ is strongly sensitive, where $mathcal{F}(X)$ is equipped with the Skorokhod metric;item {rm d)} $(mathcal{F}(X), widehat{f})$ is strongly sensitive, where $mathcal{F}(X)$ is equipped with the sendograph metric.
感应动力系统的灵敏度和强灵敏度
给定度量空间X,我们考虑X上所有正规上半连续模糊集的族,记为$mathcal{F}(X)$和一个离散动力系统$(X, F)$。本文研究了$(mathcal{F}(X), widehat{F})$是(强)敏感的情况,其中$widehat{F} $是F的Zadeh扩展,$mathcal{F}(X)$具有不同的度量:均匀度量,Skorokhod度量,sendograph度量和endograph度量。证明了诱导动力系统$(mathcal{K}(X),overline{f})$的灵敏度等价于$ widehat{f}:mathcal{f} (X)对mathcal{f} (X) $关于均匀度规、Skorokhod度规和sendograph度规的灵敏度。我们还证明了下列条件是等价的:项目{rm a)} $(X,f)$是强敏感的;项目{rm b)} $(mathcal{f} (X)$是强敏感的,其中$mathcal{f} (X)$是一致度量的;项目{rm c)} $(mathcal{f} (X)$是强敏感的,其中$mathcal{f} (X)$是强敏感的;项目{rm d)} $(mathcal{f} (X)$是强敏感的,其中$mathcal{f} (X)$是强敏感的,其中$mathcal{f} (X)$是强敏感的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
16.70%
发文量
0
期刊介绍: The two-monthly Iranian Journal of Fuzzy Systems (IJFS) aims to provide an international forum for refereed original research works in the theory and applications of fuzzy sets and systems in the areas of foundations, pure mathematics, artificial intelligence, control, robotics, data analysis, data mining, decision making, finance and management, information systems, operations research, pattern recognition and image processing, soft computing and uncertainty modeling. Manuscripts submitted to the IJFS must be original unpublished work and should not be in consideration for publication elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信