Taewook Kang, Inhee Lee, Sechang Oh, Taekwang Jang, Yejoong Kim, Hyochan Ahn, Gyouho Kim, Se-un Shin, Seokhyeon Jeong, D. Sylvester, D. Blaauw
{"title":"A 1.74.12 mm3 Fully Integrated pH Sensor for Implantable Applications using Differential Sensing and Drift-Compensation","authors":"Taewook Kang, Inhee Lee, Sechang Oh, Taekwang Jang, Yejoong Kim, Hyochan Ahn, Gyouho Kim, Se-un Shin, Seokhyeon Jeong, D. Sylvester, D. Blaauw","doi":"10.23919/VLSIC.2019.8778184","DOIUrl":null,"url":null,"abstract":"This paper presents a $1.7 \\times 4.1 \\times 2$ mm3 pH sensor that is a fully integrated, stand-alone and implantable system. Instead of a bulky cm size Ag/AgCl electrode, we use a mm-size integrated platinum electrode, and differential sensing using ISFET and REFET pair to compensate for unstable fluid potential. We also propose a drift compensation technique in which the leakage from the source and drain through the gate oxide is canceled, reducing drift $> 100 \\times $.","PeriodicalId":6707,"journal":{"name":"2019 Symposium on VLSI Circuits","volume":"43 1","pages":"C310-C311"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIC.2019.8778184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper presents a $1.7 \times 4.1 \times 2$ mm3 pH sensor that is a fully integrated, stand-alone and implantable system. Instead of a bulky cm size Ag/AgCl electrode, we use a mm-size integrated platinum electrode, and differential sensing using ISFET and REFET pair to compensate for unstable fluid potential. We also propose a drift compensation technique in which the leakage from the source and drain through the gate oxide is canceled, reducing drift $> 100 \times $.