Multicomponent Stress-strength Reliability with Exponentiated Teissier Distribution

IF 0.6 Q4 STATISTICS & PROBABILITY
Hossein Pasha-Zanoosi, A. Pourdarvish, A. Asgharzadeh
{"title":"Multicomponent Stress-strength Reliability with Exponentiated Teissier Distribution","authors":"Hossein Pasha-Zanoosi, A. Pourdarvish, A. Asgharzadeh","doi":"10.17713/ajs.v51i4.1327","DOIUrl":null,"url":null,"abstract":"This article deals with the problem of reliability in a multicomponent stress-strength (MSS) model when both stress and strength variables are from exponentiated Teissier (ET) distributions. The reliability of the system is determined using both classical and Bayesian methods, based on two scenarios where the common scale parameter is unknown or known. In the first scenario, where the common scale parameter is unknown, the maximum likelihood estimation (MLE) and the approximate Bayes estimation are derived. In the second scenario, where the scale parameter is known, the MLE, the uniformly minimum variance unbiased estimator (UMVUE) and the exact Bayes estimation are obtained. In the both scenarios, the asymptotic confidence interval and the highest probability density credible interval are established. Furthermore, two other asymptotic confidence intervals are computed based on the Logit and Arcsin transformations. Monte Carlo simulations are implemented to compare the different proposed methods. Finally, one real example is presented in support of suggested procedures.","PeriodicalId":51761,"journal":{"name":"Austrian Journal of Statistics","volume":"30 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Austrian Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17713/ajs.v51i4.1327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

This article deals with the problem of reliability in a multicomponent stress-strength (MSS) model when both stress and strength variables are from exponentiated Teissier (ET) distributions. The reliability of the system is determined using both classical and Bayesian methods, based on two scenarios where the common scale parameter is unknown or known. In the first scenario, where the common scale parameter is unknown, the maximum likelihood estimation (MLE) and the approximate Bayes estimation are derived. In the second scenario, where the scale parameter is known, the MLE, the uniformly minimum variance unbiased estimator (UMVUE) and the exact Bayes estimation are obtained. In the both scenarios, the asymptotic confidence interval and the highest probability density credible interval are established. Furthermore, two other asymptotic confidence intervals are computed based on the Logit and Arcsin transformations. Monte Carlo simulations are implemented to compare the different proposed methods. Finally, one real example is presented in support of suggested procedures.
指数Teissier分布下的多分量应力-强度可靠性
本文讨论了应力和强度变量均来自指数Teissier分布的多分量应力强度(MSS)模型的可靠性问题。系统可靠性的确定采用经典方法和贝叶斯方法,基于两种情况下,共同尺度参数是未知的或已知的。在第一种情况下,公共尺度参数未知,导出最大似然估计(MLE)和近似贝叶斯估计。在尺度参数已知的第二种情况下,得到最大似然值、均匀最小方差无偏估计(uniform minimum variance unbiased estimator, UMVUE)和精确贝叶斯估计。在这两种情况下,建立了渐近置信区间和最高概率密度可信区间。此外,基于Logit和Arcsin变换计算了另外两个渐近置信区间。通过蒙特卡罗仿真对不同的方法进行了比较。最后,给出了一个真实的例子来支持所建议的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Austrian Journal of Statistics
Austrian Journal of Statistics STATISTICS & PROBABILITY-
CiteScore
1.10
自引率
0.00%
发文量
30
审稿时长
24 weeks
期刊介绍: The Austrian Journal of Statistics is an open-access journal (without any fees) with a long history and is published approximately quarterly by the Austrian Statistical Society. Its general objective is to promote and extend the use of statistical methods in all kind of theoretical and applied disciplines. The Austrian Journal of Statistics is indexed in many data bases, such as Scopus (by Elsevier), Web of Science - ESCI by Clarivate Analytics (formely Thompson & Reuters), DOAJ, Scimago, and many more. The current estimated impact factor (via Publish or Perish) is 0.775, see HERE, or even more indices HERE. Austrian Journal of Statistics ISNN number is 1026597X Original papers and review articles in English will be published in the Austrian Journal of Statistics if judged consistently with these general aims. All papers will be refereed. Special topics sections will appear from time to time. Each section will have as a theme a specialized area of statistical application, theory, or methodology. Technical notes or problems for considerations under Shorter Communications are also invited. A special section is reserved for book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信