Optoelectronic implementation of stochastic artificial retinas

P. Lalanne, G. Prémont, D. Prévost, P. Chavel
{"title":"Optoelectronic implementation of stochastic artificial retinas","authors":"P. Lalanne, G. Prémont, D. Prévost, P. Chavel","doi":"10.1051/ANPHYS:199903009","DOIUrl":null,"url":null,"abstract":"An analogy can be established between image processing and statistical mechanics. Just like the assignment of an energy function to a physical system determines its Gibbs distribution, the assignment of an energy function to an image determines its likelihood and, as a consequence, allows to model its structure. Within this framework, related to the statistical concept of a Markov Random Field, image restoration, image segmentation, motion detection and some other low level operations can be expressed as the minimization of the corresponding energy function, or by the analogy, as finding the ground state of the corresponding physical system. In practice, however, only stochastic algorithms allow to solve this optimization problem for arbitrary energy functions. These techniques simulate thermal equilibrium under the posterior Gibbs distribution. When a gradual temperature reduction (annealing) is applied, the computation yields the maximum a posteriori (MAP) estimate for the given image processing problem. This model provides excellent results but the computations required for the estimation are too heavy on sequential computers for any practical interest. We propose stochastic optoelectronic integrated circuits (stochastic artificial retinas) able to perform MAP estimates at video-rate. In our approach, thermal motion is implemented through noisy photocurrent sources created by speckle. The annealing is provided by a reduction of the average intensity of the speckle and the MAP estimation is performed by a stochastic gradient descent in the energy landscape.","PeriodicalId":50779,"journal":{"name":"Annales De Physique","volume":"IM-30 1","pages":"125-154"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De Physique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ANPHYS:199903009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

An analogy can be established between image processing and statistical mechanics. Just like the assignment of an energy function to a physical system determines its Gibbs distribution, the assignment of an energy function to an image determines its likelihood and, as a consequence, allows to model its structure. Within this framework, related to the statistical concept of a Markov Random Field, image restoration, image segmentation, motion detection and some other low level operations can be expressed as the minimization of the corresponding energy function, or by the analogy, as finding the ground state of the corresponding physical system. In practice, however, only stochastic algorithms allow to solve this optimization problem for arbitrary energy functions. These techniques simulate thermal equilibrium under the posterior Gibbs distribution. When a gradual temperature reduction (annealing) is applied, the computation yields the maximum a posteriori (MAP) estimate for the given image processing problem. This model provides excellent results but the computations required for the estimation are too heavy on sequential computers for any practical interest. We propose stochastic optoelectronic integrated circuits (stochastic artificial retinas) able to perform MAP estimates at video-rate. In our approach, thermal motion is implemented through noisy photocurrent sources created by speckle. The annealing is provided by a reduction of the average intensity of the speckle and the MAP estimation is performed by a stochastic gradient descent in the energy landscape.
随机人工视网膜的光电实现
在图像处理和统计力学之间可以建立一个类比。就像给一个物理系统分配一个能量函数决定了它的吉布斯分布一样,给一个图像分配一个能量函数决定了它的可能性,因此,可以对它的结构进行建模。在这个框架内,与马尔可夫随机场的统计概念相关的图像恢复、图像分割、运动检测等一些低级操作可以表示为相应能量函数的最小化,或者类推为寻找相应物理系统的基态。然而,在实践中,只有随机算法允许解决任意能量函数的优化问题。这些技术模拟了Gibbs后验分布下的热平衡。当应用逐渐降温(退火)时,计算产生给定图像处理问题的最大后验(MAP)估计。这个模型提供了很好的结果,但是在顺序计算机上估计所需的计算量太大,没有任何实际意义。我们提出了随机光电集成电路(随机人工视网膜),能够在视频速率下进行MAP估计。在我们的方法中,热运动是通过散斑产生的噪声光电流源实现的。退火是通过降低散斑的平均强度来提供的,MAP估计是通过能量景观的随机梯度下降来执行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales De Physique
Annales De Physique 物理-物理:综合
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信